Skip to Main Content
Skip Nav Destination

The Src family kinase Lyn initiates intracellular signal transduction by associating with a variety of immune receptors such as antigen receptor on B cells and high-affinity Fc receptor (FcR) for immunoglobulin Ig(E) (FcεRI) on mast cells. Involvement of Lyn in the IgE-mediated immediate-type hypersensitivity is well documented, but the physiological significance of Lyn in IgG-dependent, type III low-affinity FcR for IgG (FcγRIII)-mediated responses is largely unknown. In this study, we generated a double-mutant mouse strain deficient in both type II FcR for IgG (FcγRIIB) and Lyn to exclude any involvement of inhibitory signaling by FcγRIIB, which otherwise downregulates FcγRIII-mediated cellular responses. FcγRIIB-deficient but Lyn-sufficient mice served as controls. The Lyn deficiency attenuated IgG-mediated systemic anaphylaxis in vivo, and significantly reduced calcium mobilization and degranulation responses of bone marrow–derived mast cells (BMMCs) in vitro. However, we found that either interleukin 4 or tumor necrosis factor α release by BMMCs was comparable to that from Lyn-deficient and control mice, and the reverse-passive Arthus reaction was equally induced in both mutant mice, indicating that Lyn is not involved in the onset of the IgG-mediated, FcγRIII-dependent late phase responses of mast cells. These findings provide us with insight into distinct signaling mechanisms in mast cells underlying the development of diverse pathologies as well as a therapeutic potential for selective treatment of allergic disorders.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal