Skip to Main Content
Skip Nav Destination
Article navigation

Infiltrating leukocytes may be responsible for autoimmune disease. We hypothesized that the chemokine monocyte chemoattractant protein (MCP)-1 recruits macrophages and T cells into tissues that, in turn, are required for autoimmune disease. Using the MRL-Faslpr strain with spontaneous, fatal autoimmune disease, we constructed MCP-1–deficient MRL-Faslpr mice. In MCP-1–intact MRL-Faslprmice, macrophages and T cells accumulate at sites (kidney tubules, glomeruli, pulmonary bronchioli, lymph nodes) in proportion to MCP-1 expression. Deleting MCP-1 dramatically reduces macrophage and T cell recruitment but not proliferation, protects from kidney, lung, skin, and lymph node pathology, reduces proteinuria, and prolongs survival. Notably, serum immunoglobulin (Ig) isotypes and kidney Ig/C3 deposits are not diminished in MCP-1–deficient MRL-Faslpr mice, highlighting the requirement for MCP-1–dependent leukocyte recruitment to initiate autoimmune disease. However, MCP-1–deficient mice are not completely protected from leukocytic invasion. T cells surrounding vessels with meager MCP-1 expression remain. In addition, downstream effector cytokines/chemokines are decreased in MCP-1–deficient mice, perhaps reflecting a reduction of cytokine-expressing leukocytes. Thus, MCP-1 promotes MRL-Faslpr autoimmune disease through macrophage and T cell recruitment, amplified by increasing local cytokines/chemokines. We suggest that MCP-1 is a principal therapeutic target with which to combat autoimmune diseases.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal