Skip to Main Content
Skip Nav Destination

We report that chlamydiae, which are obligate intracellular bacterial pathogens, can inhibit interferon (IFN)-γ–inducible major histocompatibility complex (MHC) class II expression. However, the IFN-γ–induced IFN regulatory factor-1 (IRF-1) and intercellular adhesion molecule 1 (ICAM-1) expression is not affected, suggesting that chlamydia may selectively target the IFN-γ signaling pathways required for MHC class II expression. Chlamydial inhibition of MHC class II expression is correlated with degradation of upstream stimulatory factor (USF)-1, a constitutively and ubiquitously expressed transcription factor required for IFN-γ induction of class II transactivator (CIITA) but not of  IRF-1 and ICAM-1. CIITA is an obligate mediator of IFN-γ–inducible MHC class II expression. Thus, diminished CIITA expression as a result of USF-1 degradation may account for the suppression of the IFN-γ–inducible MHC class II in chlamydia-infected cells. These results reveal a novel immune evasion strategy used by the intracellular bacterial pathogen chlamydia that improves our understanding of the molecular basis of pathogenesis.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal