Skip to Main Content
Skip Nav Destination
Article navigation

The 2–5A system contributes to the antiviral effect of interferons through the synthesis of 2–5A and its activation of the ribonuclease, RNase L. RNase L degrades viral and cellular RNA after activation by unique, 2–5 phosphodiester-linked, oligoadenylates [2–5A, (pp)p5 A2(P5A2)]n, n ⩾2. Because both the 2–5A system and apoptosis can serve as viral defense mechanisms and RNA degradation occurs during both processes, we investigated the potential role of RNase L in apoptosis. Overexpression of human RNase L by an inducible promoter in NIH3T3 fibroblasts decreased cell viability and triggered apoptosis. Activation of endogenous RNase L, specifically with 2–5A or with dsRNA, induced apoptosis. Inhibition of RNase L with a dominant negative mutant suppressed poly (I)·poly (C)–induced apoptosis in interferon-primed fibroblasts. Moreover, inhibition of RNase L suppressed apoptosis induced by poliovirus. Thus, increased RNase L levels induced apoptosis and inhibition of RNase L activity blocked viral-induced apoptosis. Apoptosis may be one of the antiviral mechanisms regulated by the 2–5A system.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal