Skip to Main Content
Skip Nav Destination
Article navigation

Secondary infections due to a marked immunosuppression have long been recognized as a major cause of the high morbidity and mortality rate associated with acute measles. The mechanisms underlying the inhibition of cell-mediated immunity are not clearly understood but dysfunctions of monocytes as antigen-presenting cells (APC) are implicated. In this report, we demonstrate that measles virus (MV) replicates weakly in the resting dendritic cells (DC) as in lipopolysaccharide-activated monocytes, but intensively in CD40-activated DC. The interaction of MV-infected DC with T cells not only induces syncytia formation where MV undergoes massive replication, but also leads to an impairment of DC and T cell function and cell death. CD40-activated DC decrease their capacity to produce interleukin (IL) 12, and T cells are unable to proliferate in response to MV-infected DC stimulation. A massive apoptosis of both DC and T cells is observed in the MV pulsed DC–T cell cocultures. This study suggests that DC represent a major target of MV. The enhanced MV replication during DC–T cell interaction, leading to an IL-12 production decrease and the deletion of DC and T cells, may be the essential mechanism of immunosuppression induced by MV.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal