Skip to Main Content
Skip Nav Destination
Article navigation

Recent studies have shown that many nonclassical major histocompatibility complex (MHC) (class Ib) molecules have distinct antigen-binding capabilities, including the binding of nonpeptide moieties and the binding of peptides that are different from those bound to classical MHC molecules. Here, we show that one of the H-2T region–encoded molecules, T10, when produced in Escherichia coli, can be folded in vitro with β2-microglobulin (β2m) to form a stable heterodimer in the absence of peptide or nonpeptide moieties. This heterodimer can be recognized by specific antibodies and is stimulatory to the γδ T cell clone, G8. Circular dichroism analysis indicates that T10/β2m has structural features distinct from those of classical MHC class I molecules. These results suggest a new way for MHC-like molecules to adopt a peptide-free structure and to function in the immune system.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal