Asthma is a chronic life-threatening disease of worldwide importance. Although allergic asthma and related atopic conditions correlate strongly with immune sensitization to house dust mites, it is unclear why antigens from mites provoke such powerful allergic immune responses. We have characterized the protease activity of Der p I, the group I protease allergen of the house dust mite Dermatophagoides pteronyssinus, and here report that it cleaves the low-affinity immunoglobulin (Ig) E Fc receptor (CD23) from the surface of human B lymphocytes. Der p I selectively cleaves CD23 and has no effect on the expression of any other B cell surface molecules tested. We speculate that this loss of cell surface CD23 from IgE-secreting B cells may promote and enhance IgE immune responses by ablating an important feedback inhibitory mechanism that normally limits IgE synthesis. Furthermore, since soluble CD23 is reported to promote IgE production, fragments of CD23 released by Der p I may directly enhance the synthesis of IgE. alpha 1-Antiprotease, a pulmonary antiprotease, is also shown to inhibit the cleavage of CD23 by Der p I. This may be significant in the etiopathogenesis of asthma, because other indoor pollutants associated with asthma are known to potently inhibit this antiprotease. These data suggest that the proteolytic activity of Der p I, the group I allergen of the house dust mite D. pteronyssinus, is mechanistically linked to the potent allergenicity of house dust mites. Furthermore, inhibition of Der p I by alpha 1-antiprotease suggests a mechanism by which confounding factors, such as tobacco smoke, may act as a risk factor for allergic asthma.

This content is only available as a PDF.