The CD40 surface membrane molecule plays an important role in the activation of mature human B cells, but its role in earlier stages of B lineage development is unknown. Here, we have investigated the effects of triggering the CD40 antigen on B cell precursors (BCP) by crosslinking with anti-CD40 antibody presented by Fc gamma-receptor type II-transfected murine Ltk- cells (CD40 system). CD10+ surface immunoglobulin negative (sIg-) BCP, freshly isolated from fetal bone marrow or precultured on stromal cells, proliferated in the CD40 system. This effect required the presence of IL-3, which acted as a specific cosignal among a panel of cytokines examined. The association of IL-10 and IL-7 potentiated the observed IL-3 and CD40-dependent BCP proliferation, demonstrating that IL-10 can act on early B lineage cells. CD40-dependent activation of fetal BCP did not favor maturation to sIg+ B cells, but resulted in the induction of high levels of surface membrane CD23. The emerging CD23+ BCP lacked sIg and CD10, and represented an important proportion of the cycling cells in the CD40-dependent cultures. Taken together, our data demonstrate that stimulation of the CD40 antigen induces expression of the CD23 gene, and regulates cell proliferation during normal human B cell ontogeny.

This content is only available as a PDF.