The assembly of the classical, polymorphic major histocompatibility complex class I molecules in the endoplasmic reticulum requires the presence of peptide ligands and beta 2-microglobulin (beta 2m). Formation of this trimolecular complex is a prerequisite for efficient transport to the cell surface, where presented peptides are scanned by T lymphocytes. The function of the other class I molecules is in dispute. The human, nonclassical class I gene, HLA-E, was found to be ubiquitously transcribed, whereas cell surface expression was difficult to detect upon transfection. Pulse chase experiments revealed that the HLA-E heavy chain in transfectants, obtained with the murine myeloma cell line P3X63-Ag8.653 (X63), displays a significant reduction in oligosaccharide maturation and intracellular transport compared with HLA-B27 in corresponding transfectants. The accordingly low HLA-E cell surface expression could be significantly enhanced by either reducing the culture temperature or by supplementing the medium with human beta 2m, suggesting inefficient binding of endogenous peptides to HLA-E. To analyze whether HLA-E binds peptides and to identify the corresponding ligands, fractions of acid-extracted material from HLA-E/X63 transfectants were separated by reverse phase HPLC and were tested for their ability to enhance HLA-E cell surface expression. Two fractions specifically increased the HLA class I expression on the HLA-E transfectant clone.

This content is only available as a PDF.