CD28 is an adhesion receptor expressed as a 44-kD dimer on the surface of a major subset of human T cells. The CD28 receptor regulates the production of multiple lymphokines, including interleukin 2 (IL-2), by activation of a signal transduction pathway that is poorly understood. Here we show that ligation of CD28 by a monoclonal antibody (mAb) or by a natural ligand, B7/BB1, induces protein tyrosine phosphorylation that is distinct from T cell receptor (TCR)-induced tyrosine phosphorylation. CD28-induced protein tyrosine phosphorylation was greatly enhanced in cells that had been preactivated by ligation of the TCR, or by pretreatment with phorbol esters. Rapid and prolonged tyrosine phosphorylation of a single substrate, pp100, was induced in T cells after interaction with B7/BB1 presented on transfected Chinese hamster ovary (CHO) cells. Anti-B7 mAb inhibited B7/BB1 receptor-induced tyrosine phosphorylation, indicating that B7-CD28 interaction was required. CD28-induced tyrosine phosphorylation was independent of the TCR because it occurred in a variant of the Jurkat T cell line that does not express the TCR. Herbimycin A, a protein tyrosine kinase inhibitor, could prevent CD28-induced tyrosine phosphorylation and CD28-induced IL-2 production in normal T cells. The simultaneous crosslinking of CD28 and CD45, a tyrosine phosphatase, could prevent tyrosine phosphorylation of pp100. These results suggest that specific tyrosine phosphorylation, particularly of pp100, occurs directly as a result of CD28 ligand binding and is involved in transducing the signal delivered through CD28 by accessory cells that express the B7/BB1 receptor. Thus, this particular form of signal transduction may be relevant to lymphokine production and, potentially may provide a means to study the induction of self-tolerance, given the putative role of the costimulatory signal in the induction of T cell activation or anergy.
Skip Nav Destination
Article navigation
1 April 1992
Article|
April 01 1992
Antibody and B7/BB1-mediated ligation of the CD28 receptor induces tyrosine phosphorylation in human T cells.
P Vandenberghe,
P Vandenberghe
Immune Cell Biology Program, Naval Medical Research Institute, Bethesda, Maryland 20889.
Search for other works by this author on:
G J Freeman,
G J Freeman
Immune Cell Biology Program, Naval Medical Research Institute, Bethesda, Maryland 20889.
Search for other works by this author on:
L M Nadler,
L M Nadler
Immune Cell Biology Program, Naval Medical Research Institute, Bethesda, Maryland 20889.
Search for other works by this author on:
M C Fletcher,
M C Fletcher
Immune Cell Biology Program, Naval Medical Research Institute, Bethesda, Maryland 20889.
Search for other works by this author on:
M Kamoun,
M Kamoun
Immune Cell Biology Program, Naval Medical Research Institute, Bethesda, Maryland 20889.
Search for other works by this author on:
L A Turka,
L A Turka
Immune Cell Biology Program, Naval Medical Research Institute, Bethesda, Maryland 20889.
Search for other works by this author on:
J A Ledbetter,
J A Ledbetter
Immune Cell Biology Program, Naval Medical Research Institute, Bethesda, Maryland 20889.
Search for other works by this author on:
C B Thompson,
C B Thompson
Immune Cell Biology Program, Naval Medical Research Institute, Bethesda, Maryland 20889.
Search for other works by this author on:
C H June
C H June
Immune Cell Biology Program, Naval Medical Research Institute, Bethesda, Maryland 20889.
Search for other works by this author on:
P Vandenberghe
,
G J Freeman
,
L M Nadler
,
M C Fletcher
,
M Kamoun
,
L A Turka
,
J A Ledbetter
,
C B Thompson
,
C H June
Immune Cell Biology Program, Naval Medical Research Institute, Bethesda, Maryland 20889.
Online ISSN: 1540-9538
Print ISSN: 0022-1007
J Exp Med (1992) 175 (4): 951–960.
Citation
P Vandenberghe, G J Freeman, L M Nadler, M C Fletcher, M Kamoun, L A Turka, J A Ledbetter, C B Thompson, C H June; Antibody and B7/BB1-mediated ligation of the CD28 receptor induces tyrosine phosphorylation in human T cells.. J Exp Med 1 April 1992; 175 (4): 951–960. doi: https://doi.org/10.1084/jem.175.4.951
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement