Injection of adult mice with high doses of monomeric human gamma globulins (dHGG) has been previously shown to produce a state of peripheral tolerance in both B and T cells. To gain insight into the mechanism of induction and maintenance of adult tolerance in this model, we have analyzed the pattern of lymphokines produced by control and tolerant animals in response to the tolerogen. The data presented indicate that HGG-specific, interleukin 2 (IL-2)- and interferon gamma (IFN-gamma)-producing T cells (thus referred to as T helper type 1 [Th1] cells) are rendered unresponsive after in vivo administration of soluble HGG. In contrast, antigenic stimulation of T cells isolated from tolerant adult mice leads to increased production of IL-4 in vitro. In vivo challenge of dHGG-treated adult animals with hapten-coupled HGG (p-azophenylarsonate [ARS]-HGG) induced a significant ARS-specific antibody response, suggesting that tolerance induction in this model does not completely abrogate tolerogen-specific Th activity in vivo. In agreement with the in vitro data, hapten-specific antibody response of tolerant animals is characterized by a selective deficiency in the IFN-gamma-dependent IgG2a subclass. Injection of immunogenic forms of HGG into tolerant animals also produced an IL-4-dependent increase in total serum IgE levels, indicative of an increased activity of HGG-specific Th2 cells in these animals. The finding that tolerance induction differentially affects Th subpopulations suggests that crossregulation among lymphocyte subsets may play a role in the induction and/or maintenance of acquired tolerance in adults.

This content is only available as a PDF.