Levels of adherence of Trichomonas vaginalis to epithelial cells was found to be modulated by iron. Cytoadherence values were greater than or equal to twofold higher for trichomonads grown in a complex cultivation medium supplemented with iron. This increase in adherence levels was specifically mediated by iron; parasites cultured in a low-iron medium in the presence of salts other than iron were unresponsive to changes in adherence levels. Expression of the higher adherence property, by parasites grown first in low-iron medium followed by supplementation with iron, was a function of time, and the extent of cytoadherence was proportional to the concentration of iron added to the medium. Lactoferrin, an important iron source for trichomonads at the site of infection, elevated adherence of the parasite to epithelial cells, demonstrating the likely in vivo modulation of adherence by iron. The alteration of levels of adherence caused by iron was determined to be a reflection of gene expression of previously characterized trichomonad adhesins. Parasites grown under iron-replete conditions had higher quantities of surface-exposed adhesins, and this was a result of increased synthesis of adhesins. Actinomycin D and alpha-amanitin prevented expression of adhesin molecules, which resulted in decreased cytoadherence, showing that adhesin synthesis was dependent on gene transcription. Data indicated that genes encoding the four trichomonad adhesins are coordinately regulated by iron.

This content is only available as a PDF.