The rapid breakdown of target cell DNA during CTL-mediated lysis has been difficult to explain by the granule exocytosis model of cytotoxicity. The involvement of CTL granule proteases in this process was strongly suggested by experiments in which CTL were pretreated with the serine protease inhibitor PMSF, in combination with agents that raise the pH of acidic intracellular compartments. While PMSF pretreatment alone had little effect on target lysis or DNA breakdown, the combination of PMSF and NH4Cl or monensin profoundly reduced target cell DNA release, while little effect was observed on target lysis, as measured by 51Cr release. CTL granule extracts cause release of 125I-DNA from detergent-permeabilized cells. This nuclear DNA-releasing (NDR) activity is inhibited by serine esterase inhibitors that also inhibit the granule BLT-esterase activity, and is specifically immunoabsorbed by antibodies to the CTL granule protease granzyme A. The NDR activity comigrates with BLT-esterase activity during subcellular fractionation, solubilization, gel filtration, and aprotinin-Sepharose affinity chromatography. SDS-PAGE analysis of the affinity-purified product indicates a molecular mass of 60,000 daltons under non-reducing conditions, which moves to 30,000 daltons upon reduction, consistent with previously reported behavior of granzyme A. When the purified material was reduced and alkylated, both esterase and NDR activities comigrated at 30,000 daltons upon gel filtration. Although fully lytic concentrations of purified LGL granule cytolysin alone failed to induce target cell DNA release, a combination of purified granzyme A and the cytolysin induces substantial DNA release.

This content is only available as a PDF.