Membrane cofactor protein (MCP), a regulatory molecular of the complement system with cofactor activity for the factor I-mediated inactivation of C3b and C4b, is widely distributed, being present on leukocytes, platelets, endothelial cells, epithelial cells, and fibroblasts. MCP was purified from a human T cell line (HSB2) and the NH2-terminal 24-amino acid sequence obtained by Edman degradation. An oligonucleotide probe based on this sequence was used to identify a clone from a human monocytic (U937) cDNA library. Nucleotide sequencing showed a 43-bp 5'-untranslated region, an open reading frame of 1,152 bp, and a 335-bp 3'-untranslated region followed by a 16-bp poly(A) track. The deduced full-length MCP protein consists of a 34-amino acid signal peptide and a 350-amino acid mature protein. The protein has, beginning at the NH2 terminus, four approximately 60-amino acid repeat units that match the consensus sequence found in a multigene family of complement regulatory proteins (C3b-receptor or CR1, C3d-receptor or CR2, decay-accelerating factor, C4-binding protein, and factor H), as well as several other complement and non-complement proteins. The remainder of the MCP protein consists of 25 amino acids that are rich in serine and threonine (probable site of heavy O-linked glycosylation of MCP), 17 amino acids of unknown significance, and a 23-amino acid transmembrane hydrophobic region followed by a 33-amino acid cytoplasmic tail. The MCP gene was localized to human chromosome 1, bands 1q31-41, by analysis of human x rodent somatic cell hybrid clones and by in situ hybridization. This same genetic region contains the multigene family of complement-regulatory proteins, which is thereby enlarged to include the functionally and structurally related MCP.

This content is only available as a PDF.