Highly specific, high-resolution scintigraphic images of amyloid-laden organs in mice with experimentally induced amyloid A protein (AA) amyloidosis were obtained after intravenous injection of 123I-labeled serum amyloid P component (SAP). Interestingly, a much higher proportion (up to 40%) of the injected dose of heterologous human SAP localized to amyloid and was retained there than was the case with isologous mouse SAP, indicating that human SAP binds more avidly to mouse AA fibrils than does mouse SAP. Specificity of SAP localization was established by the failure of the related proteins, human C-reactive protein and Limulus C-reactive protein, to deposit significantly in amyloid and by the absence of human SAP deposition in nonamyloidotic organs. However, only partial correlations were observed between the quantity of SAP localized and two independent estimates, histology and RIA for AA of the amount of amyloid in particular organs. It is not clear which of the three methods used reflects better the extent or clinical significance of the amyloid deposits but in vivo localization of radiolabeled SAP, detectable and quantifiable by gamma camera imaging, is apparently extremely sensitive. These findings establish the use of labeled SAP as a noninvasive in vivo diagnostic probe in experimental amyloidosis, potentially capable of revealing the natural history of the condition, and suggest that it may also be applicable generally as a specific targeting agent for diagnostic and even therapeutic purposes in clinical amyloidosis.

This content is only available as a PDF.