We used site-directed mutagenesis to localize serologically defined (s) and CTL (c)-defined alloantigenic determinants to discrete amino acid sequences of a murine MHC class I antigen. Based on the prediction that amino acid position 63-73 of the H-2Dd antigen forms s-allodeterminants, the H-2Ld gene was mutated in a sequential fashion to replace codons for amino acid positions 63, 65, 66, 70, and 73 with those of the H-2Dd amino acids. Epitopes of the mutant antigens expressed in L-cells were examined by the binding of a series of mAbs specific for the H-2Dd antigen. The mutant antigen M66 had substitutions at residues 63, 65, and 66, and resulted in the acquisition of a number of H-2Dd-specific s-epitopes. Mutant M70 had an additional substitution at residue 70, which led to the gain of multiple additional H-2Dd s-epitopes. Together, more than half of all the relevant H-2Dd s-epitopes were mapped into amino acid position 63-70 of the H-2Dd molecule, which was expressed in the mutant H-2Ld gene. The final mutation at residue 73 (M73) caused no new epitope gains, rather, a few Dd s-epitopes acquired by the preceding mutations were lost. All of the H-2Ld-specific s-determinants were retained in the mutant molecules, as were H-2Dd s-determinants specific for the alpha-2 or alpha-3 domains. Changes of these residues affected c-determinants defined by CTL. Anti-H-2Dd CTL cultures and an anti-H-2Dd CTL clone recognized the mutant H-2Ld molecules, M66 and M70. Some CTL clones generated against the Q10d molecule, which has an identical sequence to H-2Dd between residues 61 and 73, failed to recognize native H-2Dd or Ld but did crossreact with mutant Ld. While bulk-cultured anti-H-2Ld CTL cultures reacted strongly against M73, bulk-cultured H-2Ld restricted anti-vesicular stomatitis virus CTL did not. Finally, at the clonal level two of three anti-H-2Ld CTL clones lost reactivity with some or all of these mutant molecules. From these results we conclude that a stretch of amino acids from position 63 to 70 of the alpha-1 domain controls major s- and c-antigenic sites on the H-2Dd antigen and c-sites on H-2Ld antigen.

This content is only available as a PDF.