Antibodies specific for the core protein of basement membrane HSPG (Mr = 130,000) were administered to rats by intravenous injection, and the pathologic consequences on the kidney were determined at 3 min to 2 mo postinjection. Controls were given antibodies against gp330 (the pathogenic antigen of Heymann nephritis) or normal rabbit IgG. The injected anti-HSPG(GBM) IgG disappeared rapidly (by 1 d) from the circulation. The urinary excretion of albumin increased in a dose-dependent manner during the first 4 d, was increased 10-fold at 1-2 mo, but remained moderate (mean = 12 mg/24 h). By immunofluorescence the anti-HSPG(GBM) was seen to bind rapidly (by 3 min) to all glomerular capillaries, and by immunoperoxidase staining the anti-HSPG was seen to bind exclusively to the laminae rarae of the GBM where it remained during the entire 2-mo observation period. C3 was detected in glomeruli immediately after the injection (3 min), where it bound exclusively to the lamina rara interna; the amount of C3 bound increased up to 2 h but decreased rapidly thereafter, and was not detectable after 4 d. Mononuclear and PMN leukocytes accumulated in glomerular capillaries, adhered to the capillary wall, and extended pseudopodia through the endothelial fenestrae to contact in the LRI of the GBM where the immune deposits and C3 were located. At 1 wk postinjection, staining for C3 reappeared in the glomeruli of some of the rats, and by this time most of the rats, including controls injected with normal rabbit IgG, had circulating anti-rabbit IgG (by ELISA) and linear deposits of rat IgG along the GBM (by immunofluorescence). Beginning at 9 d, there was progressive subepithelial thickening of the GBM which in some places was two to three times its normal width. This thickening was due to the laying down of a new layer of basement membrane-like material on the epithelial side of the GBM, which gradually displaced the old basement membrane layers toward the endothelium. The results show that the core proteins of this population of basement membrane HSPG (Mr = 130,000), which are ubiquitous components of basement membranes, are exposed to the circulation and can bind anti-HSPG(GBM) IgG in the laminae rarae of the GBM. Binding of these antibodies to the GBM leads to changes (C3 deposition, leukocyte adherence, moderate proteinuria, GBM thickening) considered typical of the acute phase of anti-GBM glomerulonephritis. Antibody binding interferes with the normal turnover of the GBM, presumably by affecting the biosynthesis and/or degradation of basement membrane components.

This content is only available as a PDF.