B10.RIII and B10.G mice were transferred from a diet of laboratory rodent chow to a standard diet in which all the fat (5% by weight) was supplied as either fish oil (17% eicosapentaenoic acid [EPA], 12% docosahexaenoic acid [DHA], 0% arachidonic acid [AA], and 2% linoleic acid) or corn oil (0% EPA, 0% DHA, 0% AA, and 65% linoleic acid). The fatty acid composition of the macrophage phospholipids from mice on the chow diet was similar to that of mice on a corn oil diet. Mice fed the fish oil diet for only 1 wk showed substantial increases in macrophage phospholipid levels of the omega-3 fatty acids (of total fatty acid 4% was EPA, 10% docosapentaenoic acid [DPA], and 10% DHA), and decreases in omega-6 fatty acids (12% was AA, 2% docosatetraenoic acid [DTA], and 4% linoleic acid) compared to corn oil-fed mice (0% EPA, 0% DPA, 6% DHA, 20% AA, 9% DTA, and 8% linoleic acid). After 5 wk this difference between the fish oil-fed and corn oil-fed mice was even more pronounced. Further small changes occurred at 5-9 wk. We studied the prostaglandin (PG) and thromboxane (TX) profile of macrophages prepared from mice fed the two diets just before being immunized with collagen. Irrespective of diet, macrophages prepared from female mice and incubated for 24 h had significantly more PG and TX in the medium than similarly prepared macrophages from male mice. The increased percentage of EPA and decreased percentage of AA in the phospholipids of the macrophages prepared from the fish oil-fed mice was reflected in a reduction in the amount of PGE2 and PGI2 in the medium relative to identically incubated macrophages prepared from corn oil-fed mice. When this same fish oil diet was fed to B10.RIII mice for 26 d before immunization with type II collagen, the time of onset of arthritis was increased, and the incidence and severity of arthritis was reduced compared to arthritis induced in corn oil-fed mice. The females, especially those on the fish oil diet, tended to have less arthritis than the males. These alterations in the fatty acid pool available for PG and leukotriene synthesis suggest a pivotal role for the macrophage and PG in the immune and/or inflammatory response to type II collagen.

This content is only available as a PDF.