A scheme is presented whereby pluripotent hemopoietic stem cells (PHSC) from rat bone marrow can be enriched 320-fold with the aid of the fluorescence- activated cell sorter. This scheme is based on the observations that PHSC are strongly positive for Thy-1 antigen (upper 10th percentile); have light- scattering properties (size distribution) between those of bone marrow lymphocytes and myeloid progenitor cells; and are relatively resistant to cortisone. It is estimated that PHSC may constitute 80 percent of the cells isolated according to these parameters. Candidate PHSC are described at the light and electron microscopic levels. At least two populations of accessory cells appear to influence the number and/or the nature of the hemopoietic colonies that form in the in vivo spleen colony-forming unit assay. Putative amplifier cells are strongly Thy-1(+) and cortisone sensitive; putative suppressor cells are weakly Thy-1(+) and cortisone resistant.

Three subsets of granulocyte (G) -macrophage (M) progenitor cells (in vitro colony-forming cells [CFC]) are identified on the basis of relative fluorescence intensity for Thy-1 antigen: G-CFC are strongly Thy-l(+); M-CFC are weakly Thy-l(+); and cells that produce mixed G and M CFC have intermediate levels of Thy-1. GM-cluster-forming cells and mature G and M are Thy-1(-). The results suggest that G-CFC are bipotential cells that give rise to G and M-CFC; and that the latter produce mature M through a cluster- forming cell intermediate.

Thy-1 antigen is also demonstrated on members of the eosinophil, megakaryocyte, erythrocyte, and lymphocyte cell series in rat bone marrow. In each instance, the relative concentration of Thy-1 antigen is inversely related to the state of cellular differentiation.

This content is only available as a PDF.