The T-lymphocyte proliferative response to pigeon cytochrome c was studied in the mouse. H-2a and H-2k strains were responders to this antigen whereas H-2b, H-2d, H-2f, H-2ja, H-2p, H-2q, H-2r, H-2s, and H-2u strains were low or nonresponders. Genetic mapping demonstrated that two major histocompatibility complex (MHC)-linked Ir genes control the response, one in I-A, the other in I-E/I-C. The major antigenic determinant recognized in this response was localized by cross-stimulations with species variants and cyanogen bromide cleavage fragments of cytochrome c. It was found to be a topographic surface determinant composed of an isoleucine for valine substitution at residue 3, a glutamine for lysine substitution at residue 100 and a lysine for glutamic acid substitution at residue 104. Tobacco hornworm moth cytochrome c, which contains a glutamine at residue 100 but a terminal lysine at residue 103 (one amino acid closer to the glutamine), stimulated pigeon cytochrome c immune T cells better than the immunogen. This result demonstrates for the first time a functional T-cell heteroclitic proliferative response in a system under Ir gene control. Immunization with the cyanogen bromide cleavage fragments revealed that only pigeon cytochrome c fragment 81-104 was immunogenic. This fragment primed for a T-cell proliferative response whose specificity was nearly identical to that of the T-cell response primed for by the whole molecule, suggesting that the glutamine at 100 and the lysine at 104 form the immunodominant portion of the antigenic site. Furthermore, mixing experiments using the two cross-reacting antigens, hippopotamus cytochrome c and Pekin duck or chicken cytochrome c fragment (81-104), each of which contains only one of the two immunodominant substitutions, demonstrated that the T lymphocytes responding to the major antigenic determinant comprise a single family of clones that recognize both amino acids as part of the same determinant. Thus, two complementing MHC-linked Ir genes can control the immune response to a single antigenic determinant.

This content is only available as a PDF.