Antigen-binding T and B lymphocytes were studied by combined autoradiography and immunofluorescence; mouse spleen lymphocytes binding the antigens, [125I]MSH or [125I]TIGAL, were incubated with rhodamine-labeled anti-Ig reagents or with a rhodamine-labeled IgG fraction of anti-θ serum. B cells were identified as Ig+ or θ-, T cells as Ig- or θ+.

It was found that: (a) 20% (1–2 mo after priming) to 30% (3.5–4 mo after priming) of the antigen-binding cells were T cells. (b) The range of antigen molecules bound by B and T cells was similar. (c) Binding of antigen to B and T cells was inhibited by polyvalent anti-Ig, anti-µ, or anti-L reagents. Binding to T cells was more readily inhibited than to B cells. Normal rabbit serum, antimouse lymphocyte serum, or anti-θ did not inhibit antigen binding. (d) When Ig at the surface of B cells was induced, by noninhibiting concentrations of anti-Ig reagents, to redistribute into polar caps and the cells subsequently exposed to [125I)antigen under noncapping conditions, the [125I]antigen silver grains were distributed in caps superimposed on the Ig fluorescent cap. Of crucial importance, antigen was found in cap in the same proportion of T cells as B cells. Significant capping of antigen receptors was not induced in B or T cells with normal rabbit serum or by anti-Ig reagents absorbed with mouse Ig.

The main conclusions of this series of experiments using direct visualization of antigen-binding B and T lymphocytes is that T cells have antigen-specific receptors, probably of IgM nature, and that the number of these receptors appears to range in the order of thousands.

This content is only available as a PDF.