The fate of a heat-stable Escherichia coli agglutinogen within three types of rabbit phagocytic cells was examined. A system is described whereby quantitative ingestion of viable E. coli by suspensions of PMN leucocytes, BCG-induced alveolar macrophages, and oil-induced peritoneal macrophages took place in vitro. After various periods of intracellular residence aliquots were injected intraperitoneally into NCS mice and the resulting agglutinins assayed. The loss of immunogenicity within phagocytes was estimated by comparison with a dose-response titration prepared with bacteria alone. Under these conditions no increase in immunogenic mass occurred in vivo or in vitro when viable organisms were employed.

PMN leucocytes and alveolar macrophages destroyed the majority of the immunogen within 2 hours of intracellular residence. In contrast, the immunogenicity of E. coli was maintained within peritoneal macrophages for periods up to 5 hours. The use of heat-killed bacilli or specific immune serum did not significantly influence the intracellular fate of the immunogen. Residual immunogenicity was associated with a particle having the same centrifugal properties as the intact organism and essentially none was released in a soluble form. Intracellular residence within phagocytic cells did not influence the resulting temporal sequence of antibody formation nor the proportions of mercaptoethanol-sensitive and resistant immune globulins.

This content is only available as a PDF.