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Atherosclerosis is an infl ammatory disease that 
thickens the intimal part of the arterial wall by 
focal plaques, which are confi ned by a fi brous 
cap and covered with the endothelial layer 
(1, 2). Atherothrombosis is the occurrence of 
thrombosis on the surface of these plaques. 
This major complication is induced by either 
a mere denudation of the endothelium, also 
called endothelial erosion, or a frank rupture 
of the fi brous cap. The endothelial erosion 
 exposes subendothelial collagen, releases von 
Willebrand factor, and promotes platelet aggre-
gation. In addition to these mechanisms, the 
rupture releases tissue factor contained in the 
lipid core (3) and activates the coagulation 
pathway, which increases the thrombogenic 
stimulus. However, a superfi cial erosion may 
trigger massive thrombosis (4, 5), whereas a 
rupture may induce only limited thrombosis 
(6). Therefore, the resulting thrombotic response 
must be infl uenced by other factors, such as 

platelet aggregability, which might play a piv-
otal role in regulating the response to stimuli.

The chronic infl ammatory condition pre-
vailing in the plaque explains the presence of 
numerous macrophages and the activation of 
their phospholipase A2, which releases AA from 
membrane phospholipid pools. Cyclooxygenases 
(COXs), particularly COX-2, are expressed in 
plaques (7, 8) and convert arachidonic acid (AA) 
into the cyclic endoperoxide prostaglandin H2 
(PGH2). The structure of PGH2 is rearranged 
by specifi c enzymes to yield several prostanoids, 
such as thromboxane A2 (TXA2), prostacyclin 
(PGI2), or PGE2, depending on the tissue consid-
ered. In the plaque, PGH2 is thought to be pref-
erentially converted into PGE2. This is consistent 
with in vitro preferential production of PGE2 by 
sustained stimulation of macrophages (9, 10) and 
with identifi cation in the plaque of microsomal 
prostaglandin E synthase–1 (mPGES-1), which 
converts PGH2 into PGE2 (8, 11). Indeed, dis-
sected mouse ApoE−/− aorta surviving in culture 
media were shown to produce PGE2 (12).
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Prostanoids, bioactive lipids derived from arachidonic acid (AA), are important for vascular 

homeostasis. Among them, prostaglandin E2 (PGE2) enhances aggregation of platelets 

submaximally stimulated in vitro. This results from activation of EP3, one of the four PGE2 

receptors, which decreases the threshold at which agonists activate platelets to aggregate. 

Although PGE2 altered venous thrombosis induced by administration of AA, its role in 

pathophysiopathological conditions has remained speculative. We report that arterial walls 

subjected to infl ammatory stimuli produce PGE2. In several models, we show that PGE2 

produced by the arterial wall facilitates arterial thrombosis. Next, we detected PGE2 in 

mouse atherosclerotic plaques. We demonstrate that this plaque-produced PGE2 is not 

altered and is still able to activate EP3. In addition, we present evidence that PGE2 can 

leave the plaque and activate EP3 on blood platelets. Consistent with these fi ndings, we 

observed that atherothrombosis induced in vivo by mechanical rupture of the plaque was 

drastically decreased when platelets lacked EP3. In conclusion, PGE2 facilitates the initia-

tion of arterial thrombosis and, hence, contributes to atherothrombosis. Inhibition of the 

platelet EP3 receptor should improve prevention of atherothrombosis.
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In vitro, PGE2 by itself does not induce aggregation of 
platelets but modulates the response to their agonists. High 
levels of PGE2 (>10−5 M) inhibit platelet aggregation 
through nonspecifi c activation of IP, the receptor for PGI2, 
whereas low levels (<10−6 M) increase aggregation of sub-
maximally stimulated platelets (13, 14), an eff ect named 
 potentiation. The specifi c actions of PGE2 are mediated 
through binding to four diff erent G protein–coupled hepta-
helical receptors: EP1, EP2, EP3, and EP4 (15). EP2, EP3, 
and EP4 mRNAs have been identifi ed in mouse platelets, 
where EP3 expression largely predominates (16). Studies 
of mice selectively lacking each of the four known EP recep-
tors have indicated that the potentiating eff ect of PGE2 
is mediated solely by EP3 (14). Activation of EP3 on plate-
lets inhibits adenylate cyclase, decreases the cAMP intracel-
lular level (14, 16), and decreases the platelet threshold 
of acti vation (14), which explains the potentiating eff ect. In 
brief, low concentrations of PGE2 in vitro activate its EP3 
receptor on platelets and increase their sensitivity to agonists, 

leading to complete aggregation even when they are sub-
maximally stimulated.

In vivo signifi cance of the PGE2-induced potentiation of 
platelet aggregation observed in vitro requires that infl amma-
tion produces PGE2 in the low range to specifi cally activate 
the EP3 receptor, not the IP receptor. We and others (14, 16) 
have shown that mice lacking EP3 developed less severe 
thrombosis after exogenous AA was delivered in the venous 
bed. These data indicate that although its precursor was sup-
plied in abundance, PGE2 was not produced at inhibiting 
concentrations but instead increased the aggregation induced 
by TXA2 (14), a potent agonist of platelets.

We therefore hypothesized that PGE2 enhances athero-
thrombosis. To test our hypothesis, we initially examined 
whether PGE2 can modify the hemostatic balance in arterial 
fl ow, because it is a highly inhibitory environment for plate-
let aggregation. We found that PGE2 is produced by the ar-
terial wall in response to infl ammation and, using EP3-defi cient 
mice, that PGE2 facilitates local arterial thrombosis. We have 

Figure 1. Vascular wall–produced PGE2 facilitates arterial throm-

bosis through its EP3 receptor. (A) PGE2 content of mouse carotid 

arteries after periadventitial delivery of ethanol versus 50 mg/ml AA or 

after placement of a polyethylene collar for 4 wk (cuff) versus nonex-

posed carotids (control). ***, P < 0.0001. (B, left) Representative curves 

of thrombosis induced in the carotid of one Ep3+/+ versus one Ep3−/− 

mouse by periadventitial application of 100 mg/ml AA. Each point on the 

curve represents the number of green pixels detected on each of the 

12 video-recorded images per second and refl ects the number of accu-

mulating platelets. Each peak represents the formation, growth, and 

 detachment of a thrombus carried away by bloodstream. Thrombosis extent 

was measured as the gray area under the curve. (B, right) Images of 

AA-induced thrombus (green light) observed at 15 min in one Ep3+/+ (top) 

versus one Ep3−/− (bottom) mouse. Arrows indicate the carotid walls. 

(C) Extent of vehicle (ethanol)- or AA-induced thrombosis in Ep3+/+ versus 

Ep3−/− mice. ***, P < 0.001; **, P < 0.01. (D) Endothelium denudation 

as indicated by Evans blue staining after exposure of the left (L) mouse 

carotids to ferric chloride. (E) Extent of ferric chloride (FeCl3, 5%)–induced 

thrombosis in Ep3+/+ versus Ep3−/− mice. *, P = 0.011. Horizontal lines 

indicate the mean value for each group.
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detected PGE2 in mouse plaques, and we demonstrate that 
the plaque-produced PGE2 enhances atherothrombosis in-
duced by mechanical rupture of the plaque.

RESULTS

The healthy arterial wall produces PGE2 in response 

to infl ammation

We tested the ability of the arterial wall to produce PGE2 
from locally delivered AA. We observed that the PGE2 con-
tent of a healthy carotid wall (72 ± 9 pg/carotid; n = 15) in-
creased signifi cantly after we topically applied 50 mg/ml AA 
onto the adventitia (317 ± 34 pg/carotid; n = 13; P < 
0.0001; Fig. 1 A). Thus, the arterial wall can convert AA 
into PGE2. To test the production of PGE2 by arterial tissue 
in more pathophysiological conditions, we placed a collar 
loosely maintained around the carotid for 4 wk. This proce-
dure, known to locally induce a chronic infl ammatory lesion 
(17), predominantly enhanced the tissue content of PGE2 
by 22-fold, whereas the PGI2 and TXB2 increased by only 
7- and 6-fold, respectively (Table I). These data show that 
infl ammation stimulates the arterial wall to produce PGE2.

PGE2 modulates arterial thrombosis induced 

by topical delivery of AA

Endothelium produces potent inhibitors of platelet aggrega-
tion, such as PGI2 or nitric oxide (NO), to prevent any inap-
propriate local thrombosis. To test whether PGE2 produced 
by the arterial wall can oppose PGI2 and NO to alter the local 
arterial hemostatic balance, we adapted a  previously described 
model of infl ammatory venous thrombosis (14). Topical su-
perfusion of 100 mg/ml AA onto the mouse carotid induced 
intraarterial thrombosis. The inability of eicosatrienoic acid, 
which diff ers from AA by only a double bond, to induce 
thrombosis suggests that thrombus formation in this model 

depends on formation of AA metabolites (unpublished data). 
Indeed, this thrombosis was triggered by TXA2, because the 
visual semiquantitative thrombotic score (18) dropped from 
2.62 ± 0.32 (n = 8) in WT mice to 0.01 ± 0.01 (n = 8; 
P < 0.0001) in mice lacking thromboxane prostanoid (TP), 
the receptor for TXA2. Hence, periadventitial delivery of 
AA leads to its conversion into both TXA2 and PGE2 by 
the arterial wall. To examine whether the TXA2-induced 
thrombosis is modulated by PGE2 in this model, we quan-
tifi ed the extent of thrombosis in mice defi cient for EP3. 
The targeted disruption of the EP3 locus did not alter the 
production of prostaglandins by the carotid wall (Table II). 
After the mice were injected with fl uorescently labeled plate-
lets, the entire clotting process was measured by counting 
the number of green fl uorescent pixels on images acquired 
through a fl uorescence macroscope (Fig. 1 B). The extent of 
arterial thrombosis measured in the absence of EP3 (29.5 ± 
7 × 106 pixels/min; n = 13) was signifi cantly reduced when 
compared with WT mice (57.4 ± 6.2 × 106 pixels/min; 
n = 18; P = 0.006; Fig. 1 C). Thus, PGE2 produced by local 
periadventitial delivery of AA facilitated arterial thrombosis 
induced by TXA2 (Video S1, available at http://www.jem
.org/cgi/content/full/jem.20061617/DC1), suggesting that 
it successfully opposed PGI2 and NO to shift the hemostatic 
balance toward a prothrombotic state.

PGE2 modulates arterial thrombosis induced 

by topical delivery of ferric chloride

Because its conversion by cyclooxygenases leads to PGE2 
biosynthesis, the local delivery of AA to the arterial wall might 
have enforced PGE2 production and exaggerated its role in 
thrombosis formation. To test whether endothelial injury in-
duced by infl ammation produces enough PGE2 to alter local 
hemostasis, we topically applied ferric chloride (5%) onto the 

Table I. Effect of the placement of a collar on prostaglandin contents of the carotid wall

Group Control (pg/carotid) Collar (pg/carotid) Bilateral t test Ratio

PGE2 60.6 ± 8.4 (n = 6) 1,330 ± 141.6 (n = 16) P < 0.0001 21.93

6keto PGF1a 48.1 ± 15.5 (n = 8) 334.7 ± 54.3 (n = 8) P = 0.001 6.98

TXB2b 22.9 ± 6.3 (n = 8) 127 ± 22.1 (n = 8) P = 0.002 5.55

aPGI2 metabolite.
bTXA2 metabolite.

Table II. Effect of Ep3 gene disruption on prostaglandin content of the carotid wall stimulated or not by ferric chloride

Control (pg/carotid) FeCl3 (pg/carotid)

Genotype Ep3+/+ Ep3−/− t test Ep3+/+ Ep3−/− t test

PGE2 68.45 ± 9.21 

(n = 5)

69.72 ± 6.09 

(n = 5)

P = 0.91, 

NS

150 ± 25.81 

(n = 5)

122 ± 16.62 

(n = 5)

P = 0.34, 

NS

6keto PGF1a 14.09 ± 3.12 

(n = 7)

15.09 ± 3.86 

(n = 6)

P = 0.84, 

NS

23.95 ± 6.04 

(n = 7)

29.73 ± 5.69 

(n = 6)

P = 0.50, 

NS

TXB2b 4.91 ± 0.79 

(n = 6)

5.71 ± 0.57 

(n = 6)

P = 0.43, 

NS

50.75 ± 13.89 

(n = 6)

45.12 ± 11.39 

(n = 6)

P = 0.76, 

NS

aPGI2 metabolite.
bTXA2 metabolite.
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carotid. After its delivery, ferric chloride crosses the arterial 
wall and triggers thrombosis by inducing endothelial cell 
death (Fig. 1 D), subsequent release of ADP, and exposure of 
underlying collagen (19). In addition, the lesion induces local 
infl ammation and increased the arterial wall production of 
AA metabolites, as shown in Table II. In this setting, fl uores-
cent thrombosis appeared 	8 min after ferric chloride appli-
cation. It reached 12.7 ± 3.3 × 106 pixels/min (n = 11) in 
WT mice but was signifi cantly reduced to 2.2 ± 106 pixels/
min (n = 8; P = 0.011; Fig. 1 E) in mice lacking EP3. These 
results show that PGE2 produced in response to aggression of 
the arterial wall is suffi  cient to facilitate platelet activation in-
duced by ADP, TXA2, and/or collagen in arterial fl ow.

The mechanism of PGE2-induced facilitation of thrombosis

PGE2 facilitates thrombosis by decreasing the activation 
threshold of platelets, making them more sensitive to their 
agonists (14). In vivo, PGE2 is produced by the arterial wall, 
but perhaps also by activated platelets themselves (20). In the 
latter case, PGE2 might facilitate the eff ect of ADP and 
TXA2 secreted by activated platelets to recruit more plate-
lets. This would suggest that PGE2 plays a role in thrombosis 
amplifi cation rather than in thrombosis driven by infl amma-
tion of the vascular wall. To address this possibility, we ex-
amined whether in vitro aggregation of isolated platelets is 
EP3 dependent. Platelets stimulated with low concentrations 
of collagen elicited partial aggregation that was not modifi ed 
by the presence or the absence of EP3 (47.6 ± 2.1% vs. 47.9 ± 
4.2% [n = 4] at 1.5 μg/ml collagen [P = 0.95] and 58.8 ± 
4.2% vs. 57.2 ± 3% [n = 9] at 2 μg/ml collagen [P = 0.75], 
respectively; Fig. 2). The absence of potentiation shows that 
activated platelets do not produce enough PGE2 to amplify 
aggregation in vitro.

To further ascertain that platelet production of PGE2 does 
not alter aggregation in vivo, we looked for a model of throm-

bosis in which mural PGE2 is not produced when thrombosis 
starts. We tested a model of endothelial injury induced by ox-
idative stress resulting from local excitation of Rose bengal by 
a laser beam. Under standard conditions (21), we observed 
that a few clots were already visible at 4 s and that 80% of the 
arterial diameter was visually obstructed at 45 s (Fig. 3 A). 
PGE2 levels in these injured carotids were found in the range 
of control values and were not signifi cantly diff erent between 
4 s (55 ± 6 pg/carotid; n = 6) and 45 s (73 ± 11 pg/carotid; 
n = 6; P > 0.05; Fig. 3 B). Thus, we used this model de-
prived of PGE2 at the initiation of thrombosis to examine 
whether aggregating platelets could produce enough PGE2 to 
alter amplifi cation of thrombosis. Consistent with our in vitro 
data, carotids of Ep3−/− mice infused with EP3-defi cient 
platelets were totally occluded after 30 min of laser exposure, 
as were WT mice (n = 5 in each group). We concluded that 
platelets did not produce enough PGE2 in vivo to facilitate 
amplifi cation. Collectively, our data show that thrombosis is 
facilitated primarily by arterial wall–produced PGE2.

Mouse atherosclerotic plaques contain PGE2

To further substantiate its role in pathophysiological condi-
tions, we examined whether PGE2 modulates thrombosis on 

Figure 2. The in vitro facilitating effect of PGE2 is not induced 

by activated platelets. (A) Representative traces of aggregation of WT 

(green traces) versus EP3-defi cient (red traces) platelets activated by 

1.5 or 2 μg/ml of collagen. These doses were chosen to induce partial and 

submaximal aggregation, respectively, to ensure that any potentiation 

could be evidenced. The increase in light transmission indicates an in-

crease in the aggregation of platelets. (B) Quantitative analysis showing 

that the maximal aggregation of platelets was not altered by absence of 

the EP3 receptor to PGE2. Horizontal lines indicate the mean value for 

each group.

Figure 3. In vivo Rose bengal–induced oxidative stress of endo-

thelium does not stimulate local production of PGE2. (A) Representa-

tive images of thrombosis (green light) induced by oxidative stress due 

to laser excitation of Rose bengal. Only a few clots are formed at 4 s, 

whereas massive thrombosis is already seen at 45s. Arrows indicate 

 carotid walls. (B) Amount of PGE2 detected in carotid tissue after 4 or 45 s of 

oxidative stress, showing that PGE2 was not increased at the beginning of 

thrombosis (compare with Fig. 1 A), nor when thrombosis was massive. 

Horizontal lines indicate the mean value for each group.
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atherosclerotic plaques. To confi rm previous data that sug-
gested the ability of plaque to produce PGE2 (8, 12), we 
quantifi ed it directly in mouse plaques. ApoE+/+ aorta con-
tained 661 ± 98 pg PGE2 (n = 12), whereas its amount in 
ApoE−/− aorta was found to be about fourfold higher, at 
2,483 ± 485 pg (n = 14; P < 0.05). After we fed ApoE−/− 
mice a high fat diet, which is known to increase the size of 
atherosclerotic lesions, the diff erence was even more impres-
sive (5,018 ± 705 pg/aorta; n = 23; P < 0.001; Fig. 4 A). 
Thus, atherosclerotic plaques produce PGE2.

Plaque-produced PGE2 is functional and able to activate 

EP3 on platelets in vitro

Because numerous macrophages are recruited in the plaque 
(22, 23) and produce reactive oxygen species (24), we exam-
ined whether PGE2 produced by the plaque was functionally 
altered. Homogenates of whole atherosclerotic plaques added 
to platelet suspension in vitro trigger their aggregation, as a 
consequence of their high content of collagen (25). We ob-
served that low concentrations of homogenized plaques 
added to EP3-defi cient platelets induced aggregation that 
reached only 14.6 ± 3% of WT platelet aggregations (n = 6; 
Fig. 4 B). We concluded that mouse atherosclerotic plaques 
contain a molecule able to activate EP3. To rule out that a 
molecule other than PGE2 could activate EP3 (26), we 
treated mice with high doses of aspirin (500 mg/kg for 8 d) 
to inhibit cyclooxygenases. As expected, the treatment de-
pressed the PGE2 levels in plaques (401.1 ± 163.8 pg/aorta; 
n = 4) down to the range of ApoE+/+ aorta values. Aggrega-
tion elicited by EP3-defi cient platelets in response to homo-
genized suspensions of these aspirin-treated plaques reached 
101 ± 15.1% of the aggregation elicited by WT platelets 
(Fig. 4 C). Thus, the EP3 receptor was not activated when 
PGE2 production is inhibited, indicating that the potentiat-
ing eff ect of homogenized plaques was indeed caused by 
PGE2. Hence, PGE2 produced by atherosclerotic plaques 
can activate EP3.

PGE2 contained in atherosclerotic plaques activates EP3 

on blood platelets

We wondered whether PGE2 can exit from the plaque to act 
effi  ciently on blood platelets. To address the question, we 
enforced the plaque production of PGE2 by exposing its 
 endoluminal side to low concentrations of AA (2 mg/ml; Fig. 
5 A). We observed thrombi forming spontaneously when 
blood fl ow returned after the plaque has been incubated with 
AA (Fig. 5 B, middle). Importantly, thrombosis was detected 
only at the contact of the plaque, indicating that the plaque 
produced a platelet agonist that triggered local aggregation. 
Conversely, healthy the arterial wall was left unchanged by 
AA incubation, showing that the chosen dose of AA was too 
low to induce thrombosis at its contact (Fig. 5 B, top). We 
examined whether the plaque-produced PGE2 could modu-
late the local thrombosis elicited by the plaque, using Ep3−/− 
mice crossed with ApoE−/− mice. In these >55-wk-old dou-
ble-mutant mice (ApoE−/− × Ep3−/−), the lack of EP3 did 

not alter the extent of atherosclerosis, because their plaques 
covered 49.3 ± 4.1% (n = 10) of the total aortic surface ver-
sus 49.8 ± 5.1% (n = 9; P = 0.94) in ApoE−/− × Ep3+/+ 
controls. The extent of thrombosis induced by intraluminal 
AA delivery reached 5.3 ± 1.5 × 106 pixels/min (n = 10) 
in the presence of WT platelets but was drastically reduced 
to 0.9 ± 0.2 × 106 pixels/min (n = 10; P < 0.05) when 
 injected fl uorescent platelets lacked EP3 (Fig. 5 C and Video 
S2, available at http://www.jem.org/cgi/content/full/jem
.20061617/DC1). This experiment shows that AA- induced 
atherothrombosis in these mice was modulated by PGE2, 

Figure 4. Mouse atherosclerotic plaques produce functional 

PGE2. (A) PGE2 content of aortic arteries from ApoE+/+ versus ApoE−/− 

mice, showing that PGE2 tissue content is increased by the mere pres-

ence of atherosclerotic plaques, especially when the development 

of plaques was accelerated by a high fat diet for 3 wk. *, P < 0.05; 

***, P < 0.001. HFD, high fat diet. (B) Representative traces and quantitative 

analysis showing Ep3+/+ versus Ep3−/− platelet aggregation in response 

to 0.5 mg/ml of mouse homogenized plaques. The lack of EP3 on plate-

lets strikingly reduced their response to the plaque material, indicating 

that a molecule produced inside the plaques activates EP3. *, P = 0.002. 

(C) Representative traces and quantitative analysis of platelet aggrega-

tion induced by mouse homogenized plaques extracted from ApoE−/− 

mice treated by high doses of aspirin, documenting the lack of differ-

ence between Ep3+/+ versus Ep3−/− platelet responses when PGE2 

 production is depressed. Horizontal lines indicate the mean value in 

each group.
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which indicates that the plaque-produced PGE2 was able to 
act on blood platelets through EP3.

Plaque-produced PGE2 promotes atherothrombosis induced 

by rupture of the plaque

In the last step, we tested the role of PGE2 in pathophysio-
logical conditions. Rupture of the fi brous cap allows blood 
platelets to be activated by their agonists present inside the 
lesion, such as collagen (25), lysophosphatidic acid (27), or 
tissue factor (28) that generates thrombin. We therefore ex-
amined whether a mere rupture of the plaque, the most fre-
quent cause of myocardial infarction in human pathology, 
could induce atherothrombosis. After a tiny curved needle 
was introduced through a collateral of internal carotid and 
scratched the plaque (Fig. 6, A–C), we observed small, non-
occluding, but nevertheless detectable thrombosis on the sur-
face of the ruptured plaque. Thrombi associated platelets 
(seen in fl uorescence), red blood cells (seen on cross section; 
Fig. 6 C), and fi brin (Fig. 6 B, bottom). Although the rup-
tured areas measured by scanning electronic microscopy were 
similar in both groups of mice (34,200 ± 7,691 μm2 [n = 13] 
vs. 35,600 ± 7,454 μm2 [n = 10], respectively; P = 0.89), 
we observed an impressive reduction in the development of 
thrombosis according to the presence (0.16 ± 0.05 × 106 
pixels/min; n = 13) or absence (0.007 ± 0.005 × 106 pixels/
min; n = 10; P = 0.008) of EP3 on platelets injected in 

ApoE−/− mice (Fig. 6 D). Thus, our data support the hy-
pothesis that PGE2 produced in the plaques aggravates 
atherothrombosis.

D I S C U S S I O N 

It was not possible to predict what the in vivo action of PGE2 
would be, if any, from its in vitro eff ects, which are both in-
hibition and potentiation of platelet aggregation. Studies 
identifi ed EP3 as the receptor mediating the potentiating ef-
fect and showed that in vivo PGE2 might exert its potentiat-
ing eff ect on venous thrombosis (14, 16). However, these 
studies did not establish whether PGE2 is produced in patho-
physiopathological conditions nor whether PGE2 modifi es 
the hemostatic balance in arterial fl ow, where thrombosis is 
tightly controlled by endothelial production of potent inhib-
itors. Our present experiments show that PGE2 is produced 
by the arterial wall in response to infl ammation and shifts the 
local hemostatic balance toward a prothrombotic state. These 
data allow us to conclude that PGE2 has an in vivo pro-
thrombotic role. Moreover, our studies of the atherosclerotic 
plaques demonstrate that thrombosis induced by a rupture of 
the fi brous cap is clearly enhanced by the plaque-produced 
PGE2. This suggests that PGE2 modulates the thrombogenic 
potential of the plaque.

However, the impact of low PGE2 levels on thrombosis 
was examined in a recent study using mice defi cient for one 

Figure 5. PGE2 found in mouse atherosclerotic plaques can act 

on blood platelets. (A) Model depicting the in vivo set-up used for endo-

luminal delivery of AA at low concentrations to the plaque. (B) Images from 

videos recorded under fl uorescence, showing a segment of carotid with a 

plaque in yellow (autofl uorescence) and thrombi in green. (top) An example 

of the absence of response to 2 μg/ml AA in healthy carotid. Conversely, 

thrombosis developed on plaques after the same amount of AA was 

 delivered in carotids of double-mutant (ApoE−/− × Ep3−/−) mice 

injected with WT (middle) or Ep3−/− (bottom) platelets. (C) Quantitative 

analysis of experiments depicted in A. The chosen dose of AA never 

 induced thrombosis in the absence of plaque (control, platelets Ep3+/+), 

whereas thrombosis observed on plaques in double mutants injected with 

WT platelets (ApoE−/− × Ep3−/−, platelets Ep3+/+) was signifi cantly de-

creased when platelets lacked EP3 (ApoE−/− × Ep3−/−, platelets Ep3−/−). 

***, P < 0.001; *, P < 0.05. Horizontal lines indicate the mean value for 

each group. DKO, double knockout.
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of the enzymes catalyzing the last step in PGE2 biosynthesis, 
mPGES-1 (21). To our surprise, arterial thrombosis was not 
decreased in mPGES-1−/− mice, suggesting that PGE2 did 
not potentiate in vivo platelet aggregation, at least when 
thrombosis was induced by endothelial oxidative stress result-
ing from local excitation of Rose bengal. Using the same 
model of endothelial injury, we could not observe any diff er-
ence in the extent of fl uorescent thrombosis detected in mice 
injected with WT versus EP3-defi cient platelets. However, 
we were also unable to detect substantial levels of PGE2 in 
the arterial walls of WT mice subjected to this oxidative 
stress. The Rose bengal–laser model induces thrombosis 
 before infl ammatory mechanisms could produce the PGE2 
level required for its potentiating eff ect, and it is likely that 
infl ammation takes place secondarily when PGE2 can no 
longer infl uence an already maximal thrombosis. Thus, the 
inability of this model to produce PGE2 when thrombosis 
develops explains the lack of diff erence between WT and 
mPGES-1−/− mice. On another hand, this limitation high-
lights the fact that some models of thrombosis might not have 
a clear pathophysiological signifi cance. This prompted us to 

examine the eff ect of PGE2 in a clearly more pathophysio-
logical condition such as atherothrombosis.

A role for PGE2 in atherothrombosis has been previously 
suggested, but through an indirect mechanism. From associa-
tion studies showing colocalization of macrophages, mPGES-1, 
and metalloproteases, it was deduced that PGE2 might stim-
ulate metalloproteases to thin the fi brous cap. The subse-
quent increased vulnerability of the plaque might favor 
atherothrombosis. This concept links PGE2 to atherothrom-
bosis through a suggested action on plaque stability (8). Our 
study used direct tissue detection and confi rmed that athero-
sclerotic plaques produce PGE2. Above all, our work links 
PGE2 to atherothrombosis through its direct action on plate-
lets and thrombosis, showing that it increases the platelet sen-
sitivity to their agonists in vivo.

To establish this direct link, we set up a model of athero-
thrombosis in which we simply scratched the plaque without 
interrupting the blood fl ow (Fig. 6 B). This mechanical dis-
ruption induces local thrombosis at the contact of the plaque 
(Fig. 6 C). Although our model looks histologically close to 
ruptures observed in autopsy studies, creating a defect in the 

Figure 6. Atherothrombosis triggered by rupture of the plaque 

is exacerbated by PGE2. (A) Model depicting the set-up used to rupture 

mouse plaques in vivo with a needle. (B) Scanning electron microscopy 

photographs showing the rupture induced by the passage of the needle 

(top) and a case where fi brin network was still observable near the rup-

ture after the wash (bottom). Bars, 50 μm. (C) Thrombus on the needle-

induced lesion of the plaque. The arrow indicates the fracture. Bar, 50 μm. 

(D) Quantitative analysis of thrombosis measured at the surface of 

 ruptured plaques in ApoE−/− mice, showing that absence of EP3 on 

 platelets almost suppressed atherothrombosis that developed in the 

 presence of WT platelets. **, P = 0.0081. Horizontal lines indicate 

the mean value for each group.

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/204/2/311/1726035/jem
_20061617.pdf by guest on 24 April 2024



318 PGE2 AGGRAVATES ATHEROTHROMBOSIS | Gross et al.

fi brous cap and exposing the thrombogenic core to circulat-
ing blood, its main limitation is linked to the mechanism of 
rupture. The current paradigm links infl ammation to the 
plaque vulnerability through the action of metalloproteases. 
This mechanism implies that the most infl ammatory plaques 
are the most vulnerable. As a consequence, rupture happens 
mainly on high-grade infl amed plaques. In contrast, we 
scratched plaques without knowledge of their infl ammatory 
status, and some of them were very likely low-grade  infl amed. 
This potential limitation might explain the variable response 
to the scratch in the control group (Fig. 6 D). However, it 
conversely strengthens our conclusion that PGE2 enhances 
atherothrombosis, because the more infl amed a plaque, the 
more PGE2 it might produce.

We established this direct link in mice, not in humans. 
However, a high homology (in the range of 80–90%) was 
found between mouse and human gene sequences coding for 
the PGE2 receptors (15). In addition, mouse and human dis-
tribution patterns of EP receptors on platelets are very simi-
lar, because RT-PCR showed obvious EP3 and EP4 bands 
in both species, whereas the EP2 band was really faint 
(16, 29). This is consistent with in vitro platelet responses to 
PGE2, which are very similar in mice (14) and in humans 
(13, 30, 31). Collectively, these data show a high similarity 
between mouse and human platelet behavior in response to 
PGE2, suggesting that PGE2 also facilitates arterial thrombosis 
in humans.

PGE2 appears in our study as a molecule playing a role in 
vascular wall homeostasis through its action in limited healing 
thrombosis. Indeed, the fact that PGE2 facilitated thrombosis 
in the arterial fl ow in response to infl ammation indicates that 
its in vivo eff ect is suffi  cient to oppose PGI2. Therefore, even 
when a small vascular lesion releases or exposes low amounts 
of agonists, the concentrations of which are below the plate-
let activation threshold, the presence of PGE2 produced by 
local infl ammation may sensitize platelets and foster healing 
thrombosis. Conversely, PGI2 produced upon infl ammation 
by neighboring functional endothelial cells limits the extent 
of thrombosis (32) to restrict it to the lesion. Hence, PGE2 
catalyzes healing thrombosis on small lesions, whereas PGI2 
restricts its amplifi cation to keep it focalized (Fig. 7).

On the contrary, PGE2 produced by the plaques must be 
regarded as a harmful molecule, because it aggravates athero-
thrombosis. In this study, PGE2 present in subendothelial 
connective tissue sensitizes platelets that adhered to a mere 
erosion and facilitates local thrombosis. Providing that the 
surrounding endothelium on the plaque is dysfunctional (33, 34), 
the nascent thrombosis is incompletely controlled by the 
 defi cient local production of NO and/or PGI2. Thus, PGE2 
might trigger a massive and occluding thrombosis on a mere 
endothelial erosion.

To prevent this dreadful sequence, the eff ect of PGE2 
should be inhibited. PGE2 has numerous functions in various 
physiological systems, implying that inhibition of its produc-
tion might induce unexpected side eff ects. Inhibiting the EP3 
receptor instead might be safer, especially considering that 

the EP3 receptor has multiple isoforms (35). Therefore, a 
drug targeting the platelet EP3 isoform, which inhibits ade-
nylate cyclase, might be much more specifi c than a drug in-
hibiting PGE2 production. Such a drug should improve the 
current limited effi  ciency in preventing myocardial infarction 
(36, 37). Indeed, aspirin at low doses, the treatment of refer-
ence, inhibits COX-1 in platelets but does not alter the 
COX-2 that produces PGE2 in plaques. In addition, specifi c 
inhibition of COX-2 that could be benefi cial in decreasing 
the PGE2 level has in fact been detrimental because of con-
comitant inhibition of PGI2 (38). Specifi c inhibition of the 
platelet EP3 receptor will shift the hemostatic balance toward 
an antithrombotic state by inhibiting the facilitating eff ect of 
PGE2 and allowing PGI2 to predominate. Finally, keeping in 
mind that PGE2 is produced by the arterial wall in response 
to infl ammation, such a treatment would theoretically de-
crease only thrombosis triggered by infl ammation.

In conclusion, we have shown that the potentiating eff ect 
of PGE2 has a clear in vivo signifi cance. Through its platelet 
EP3 receptor, PGE2 is a full actor in intravascular hemostasis 
in infl ammatory conditions, appearing as another link be-
tween infl ammation and thrombosis. As a major consequence, 
we demonstrated that PGE2 exacerbates atherothrombosis. 
This unexpected role for PGE2 opens new possibilities for 
preventing myocardial infarction or stroke.

MATERIALS AND METHODS
Mice. Homozygous ApoE−/− mice were obtained from the Jackson Labo-

ratory. Ep3−/− mice (provided by B.H. Koller, University of North Carolina 

at Chapel Hill, Chapel Hill, NC) and Tp−/− mice (provided by T.M. 

 Coff man, Duke University, Durham, NC) were previously described (39, 40). 

Ep3−/− and ApoE−/− mice have been intercrossed to obtain double-

 mutant mice. All of these strains were maintained on a C57BL/6 genetic 

Figure 7. Proposed model for in vivo action of PGE2/EP3 upon 

thrombosis. Platelet agonists activate their specifi c receptor (R), trigger-

ing the signaling cascade and exposing the integrin αIIbβ3, which is cru-

cial for platelet aggregation. Infl ammation of the vessel or rupture of the 

plaque releases PGE2 locally. Activation of its EP3 receptor on platelets 

decreases the internal level of cAMP, whereas activation of IP receptor by 

endothelium-produced PGI2 increases it. This balance between PGE2 and 

PGI2 eventually determines the intracellular level of cAMP. Because the 

cAMP level inhibits some steps of the signaling cascade activated by R, 

the balance ultimately regulates the platelet capability to aggregate in 

response to its agonists. Hence, platelet rupture or vessel wall infl amma-

tion enhances platelet aggregability via the release of PGE2.
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background. Animal procedures were approved by the local committee for 

animal ethics (Comité Régional d’éthique en Matière d’Expérimentation 

Animale de Strasbourg, Strasbourg, France). The investigator was unaware 

of the genotype of mice throughout the experiments.

Prostaglandin detection. Prostaglandin levels were determined from 

mashed tissues, using specifi c enzyme immunoassays (GE Healthcare). In the 

fi rst experiment, the left common carotid of mice was dissected free, and a 

strip of parafi lm was slipped below the carotid for topical application of 

100% EtOH (vehicle) or 40 μL AA (50 mg/ml in EtOH; Sigma-Aldrich) for 

10 min. The carotid was harvested and snap frozen 30 min later. In a second 

series of experiments, a nonconstrictive polyethylene collar (0.38-mm inner 

diameter; Biotrol) was placed loosely around the left common carotid, as 

previously described (17), for 4 wk. In a third group, aortas of at least 35-wk-old 

ApoE−/− mice were harvested from the aortic valves to the renal bifurcation 

and snap frozen. In the fi nal group, ApoE−/− mice were fed a high fat diet 

(D12336i; Research Diets, Inc.) for 4 wk.

Visual scoring of arterial thrombosis. Carotids were exposed to 100 

mg/ml AA for 10 min, and thrombosis was scored 2 h later under magnifi ca-

tion using a visual scale from 0 to 4 (18).

Quantifi cation of thrombosis induced in healthy carotids. Whole 

blood collected on 0.38% sodium citrate was centrifuged at 100 g to allow 

separation of platelets. Washed platelets were incubated with 300 ng/ml cal-

cein AM (Invitrogen) in Tyrode’s buff er for 15 min in the dark. Washed la-

beled platelets were injected in the jugular vein of receiver mice. The treated 

carotid was placed under a fl uorescent macroscope (MacroFluo; Leica) for 

video recording of thrombosis at 480 nm. Images extracted from the 40-min 

recorded video were computer processed for counting the number of green 

pixels. Thrombosis extent was expressed as the total number of green pixels 

divided by the duration of the experiment in minutes (pixels/min).

Models of thrombogenesis. The carotid was exposed to 100mg/ml AA 

or eicosatrienoic acid for 25 min, and thrombosis was recorded. Throm-

bosis induced by 5% ferric chloride (1 μL; Sigma-Aldrich) was recorded 

immediately after the topical application. To demonstrate ferric chloride–

induced denudation, three mice received 200 μl of 2% Evans blue and 30 

μl heparin (100 U/ml). The photochemical injury followed the procedure 

previously described (21), except that thrombosis was quantifi ed by fl uo-

macroscopy, as described in the previous section. Rose bengal (Fischer 

Scientifi c) was diluted in PBS and injected in the jugular vein in a volume 

of 0.12 ml at a concentration of 50 mg/kg. The 1.5-mW, 540-nm laser 

(model 05-LGR-193; Melles Griot) was applied from a distance of 5 cm 

for 4 s, 45 s, or 30 min. The carotid was then harvested and snap frozen 

for PGE2 detection.

Platelet aggregation. Aggregation tests were performed in an optical 

 aggregometer (model 570-VS; Chrono-log Corporation), using 250 μl of 

platelet-rich plasma adjusted to 300,000 platelets/μL. Collagen was obtained 

from Chrono-log Corporation. Homogenates were obtained by mashing 

plaques in saline at a concentration of 80 mg/ml. Aspirin-treated ApoE−/− 

mice received 500 mg/kg aspegic (Sanofi -Synthelabo) i.p. daily for 8 d. 

Each homogenized plaque was used for both PGE2 detection and aggre-

gation tests.

AA-induced atherothrombosis. Mice >55 wk old received fl uorescent 

platelets, and one carotid was exposed. An injection chamber was made by 

isolating an arterial segment bearing at least one plaque from blood fl ow with 

temporary ligatures (Fig. 5 A). Once washed, the chamber was fi lled with 

DMSO for 10 min before the blood fl ow returned. A 10-min video ensured 

that DMSO did not induce thrombosis. After ligatures were placed again, 

the vascular chamber was fi lled with a 2-μL solution of 2 mg/ml AA (in 

DMSO) for 10 min. Once blood refl owed, thrombosis was recorded through 

a double bandpass optical fi lter (525 and 605 nm) for 30 min.

Rupture-induced atherothrombosis. After its tip was curved, a clean 

30-gauge needle was introduced in 60-wk-old ApoE−/− mice through a 

small collateral of internal carotid (Fig. 6 A). Under magnifi cation, the tip of 

the needle was positioned next to the distal edge of the plaque, applied to the 

plaque, and pulled backward under visual control. The collateral artery was 

ligatured, and the mouse was placed under the fl uomacroscope for 20 min 

for video recording. The carotid was washed, harvested, fi xed in 2.5% glu-

taraldehyde overnight, fi xed in cacodylate buff er for a few minutes, post-

fi xed for 60 min in 4% osmium tetroxide, dehydrated in increasing ethanol 

concentrations, critical point dried with hexamethyldisilazane, mounted, 

sputter coated with palladium, and examined with a scanning electron 

 microscope (XL20; Philips). Rupture areas were measured using Scion 

Image software. In two additional cases, the carotid was snap frozen, and 

7-μm cross sections were stained by hematoxylin and eosin.

En face atherosclerosis analysis. Anesthetized mice were infused 

with 10% neutral buff ered formalin. Aorta were dissected, placed overnight 

in formalin at 4°C, opened longitudinally, and stained with 0.5% Sudan 

black. Measurements of the plaque area were performed using Scion 

Image software.

Statistics. Statistical tests were bilateral and nonpaired student t tests. When 

variances were not comparable, we used the bilateral nonpaired Welch-

 corrected t test. To compare more than two groups with non-Gaussian dis-

tribution, we used the Kruskal-Wallis test, followed by Dunn’s multiple 

comparison test. Means are expressed ±SEM. All tests were performed using 

GraphPad Prism (version 3.0 for Windows; GraphPad Software). P < 0.05 

denotes statistical signifi cance.

Online supplemental material. Video S1 shows the eff ect of EP3 on the 

thrombotic response induced by periadventitial delivery of AA onto the 

mouse carotid artery. Video S2 shows atherothrombosis developing at the 

surface of a mouse carotid plaque in response to intraluminal delivery of AA, 

when EP3 is expressed or not. Online supplemental material is available at 

http://www.jem.org/cgi/content/full/jem.20061617/DC1.
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