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Abstract

To identity endocytic receptors that allow dendritic cells (DCs) to capture and present antigens
on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205,
which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically
coupled to monoclonal aDEC-205 antibody, was presented by CD11¢* lymph node DCs, but
not by CD11c¢™ cells, to OVA-specific, CD4% and CD8" T cells. Receptor-mediated presen-
tation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the
DCs had to express transporter of antigenic peptides (TAP) transporters. When aDEC-205:0OVA
was injected subcutaneously, OVA protein was identified over a 4—48 h period in DCs, pri-
marily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively
presented by DCs to TCR transgenic CD8* cells, again at least 400 times more effectively than
soluble OVA and in a TAP-dependent fashion. Targeting of a DEC-205:OVA to DCs in the
steady state initially induced 4—7 cycles of T cell division, but the T cells were then deleted and
the mice became specifically unresponsive to rechallenge with OVA in complete Freund’s ad-
juvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together
with aDEC-205:OVA, induced strong immunity. The CD8" T cells responding in the pres-
ence of agonistic ®CD40 antibody produced large amounts of interleukin 2 and interferon vy,
acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vig-
orously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mech-
anism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in
the steady state and immunity after DC maturation.
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The immune system resists pathogens while remaining tol-
erant of self-antigens and innocuous proteins in the envi-
ronment. Immune tolerance can be maintained by both
central and peripheral mechanisms. Central tolerance for T
cells is established in the thymus, where self-reactive T cells
can be deleted (1-3), e.g., after an encounter with antigen
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on the surface of thymic medullary dendritic cells (DCs)*
(4-6). Peripheral tolerance mechanisms are required in sit-
uations where central tolerance is incomplete and for anti-
gens that do not access the thymus, e.g., environmental
proteins typically found at body surfaces like the airway and
intestine (for reviews, see references 7—10). DCs in the pe-
riphery continuously capture proteins from the airway and
intestine (11, 12) and are anatomically positioned to present
these antigens to T cells in lymphoid organs (13, 14). A

* Abbreviations used in this paper: CFSE, carboxyfluorescein diacetate suc-
cinimidyl ester; DC, dendritic cell.
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well-studied model involves the presentation of antigens
from insulin producing, pancreatic islet B cells on MHC
class I and II products of DCs in pancreatic lymph nodes
(15-18). However, the experimental induction of periph-
eral tolerance to proteins presented on MHC class I usually
requires the injection of large amounts of preprocessed
peptides rather than small amounts of intact proteins (19).
Efficient molecular pathways for developing tolerance to
environmental and self-proteins presented on MHC class I
products remain to be defined.

DCs have a number of receptors for adsorptive uptake of
antigens. Some are shared with other cells, such as Fcy re-
ceptors (20-23) and the macrophage mannose receptor
(24). Other receptors are more DC restricted, e.g., Lan-
gerin or CD207 (25), DC-SIGN or CD209 (26, 27), an
asialoglycoprotein receptor (28), and BDCA-2 (29), but at
this time, these receptors have not been shown to mediate
the selective presentation of antigens on the MHC class [
and II products of DCs in vivo. In contrast, DEC-205, an
endocytic receptor with 10 membrane-external, contigu-
ous C-type lectin domains (30, 31), mediates the efficient
processing and presentation of antigens on MHC class II
products in vivo (32). DEC-205 is expressed at high levels
on DCs in the T cell areas of lymphoid organs (13, 33), and
aDEC-205 antibodies are available that selectively target
these DCs in mice (32). Here we chemically couple a pro-
tein to aDEC-205 and demonstrate the capacity of this re-
ceptor to deliver endocytosed protein in the absence of in-
fection to the TAP-dependent pathway for MHC class I
peptide loading. Small amounts of injected antigen, tar-
geted to DCs by the DEC-205 adsorptive pathway, are
able to induce solid peripheral CD8* T cell tolerance.
These results identify an efficient receptor-based mecha-
nism for DCs to continually capture antigens for presenta-
tion on MHC class I products in the steady state and to
block the development of CD8" T cell reactivity.

Materials and Methods

Antibodies. Antibodies to CD45.1 (A20) and other cell
surface markers (CD8a/53—-6.7, CD62L/MEL-14, CD80/16—
10A1, CD86/GL1, MHC class II I-A®/AF6-120.1) including
TCR specificities (VBs4,5./MR9-4; Va,/B20.1) were pur-
chased from BD Biosciences. Hybridomas producing antibodies
were obtained from the American Type Culture Collection in-
cluding DEC-205/CD205 (NLDC-145 HB 290), GL-117 (a
nonreactive rat IgG2a isotype match for DEC-205), CD107a/
LAMP-1, MHC class II (M5/114, TIB120), F4/80 (HB 198),
NK1.1, B220 (RA3-6B2), CD4 (GK1.5, TIB 207), CD8 (53.6.7
TIB 105), and CD1lc (N418, HB224). Agonistic aCD40
FGK45.5 mAb was provided by Dr. T. Rolink (Basel Institute
for Immunology, Basel, Switzerland). Magnetic microbeads were
from Miltenyi Biotec.

Mice. C57BL/6 (B6) mice were obtained from Taconic and
TAP~/~ mice from The Jackson Laboratory. OT-I mice were
provided by Dr. F. Carbone (University of Melbourne, Parkville,
Victoria, Australia) and OT-II were obtained from the Trudeau
Institute. CD45.1% OT-I mice were produced by crossing OT-I
to B6.SJL-Ptprc mice (The Jackson Laboratory).

Conjugation of OVA to Monoclonal Antibodies.  Purified IgGs
were conjugated to maleimide activated OVA (Pierce Chemi-
cal Co.) or LPS-free OVA (Seikagaku Corporation) activated
with Sulfo-SMCC (sulfosuccinimidyl 4-(N-maleimidomethyl)
cyclohexane-1-carboxylate; Pierce Chemical Co.) using the
manufacturer’s protocol. Antibody:OVA conjugates prepared
with OVA from both sources gave similar results in terms of
DC targeting and T cell responses in vivo. Although it is diffi-
cult to exclude some contamination with LPS in our prepara-
tions, the DCs in mice injected with antibody conjugates did
not show evidence for maturation, as occurs when LPS is ad-
ministered to mice. For coupling, the antibodies were reduced
using 2-mercapto-ethanolamine:HCI and separated from the
reducing agent over a desalting column. Then maleimide-acti-
vated OVA was mixed with the reduced antibodies overnight
at 4°C. The antibody:OVA conjugates were passed over a pro-
tein G column to remove unconjugated OVA, concentrated by
spin columns (Millipore) and evaluated by spectrophotometry
and SDS-PAGE.

Isolation of DCs and Antigen-specific T Cells. Popliteal, in-
guinal, axillary, and brachial LNs were removed from adult fe-
male B6 or TAP™/~ mice. Single cell suspensions were prepared
with 400 U/ml collagenase for 25 min (Roche). The cells were
incubated with anti-mouse CD11¢ or CD19 MACS® micro-
beads for 30 min on ice. CD11c* (DC-enriched), CD19* (B
cell-enriched), and double negative cells were separated by ap-
plication of a magnetic field and dispensed into 48-well plates at
5 X 10° cells/well. Cells were cultured with antigen overnight
(16—20 h) at 37°C and washed twice in PBS before use as anti-
gen presenting cells for naive TCR transgenic, OVA-specific T
cells. Bone marrow DCs were prepared with GM-CSF as de-
scribed previously (34). 6 d after bone marrow harvest, the DCs
were dislodged, washed, and pulsed with antibody:OVA conju-
gate (10 pg/ml) for 6 h before coculture with T cells. CD8* or
CD4* T cells were prepared from OT-I or OT-II mice, respec-
tively. OT-I and OT-II T cells were purified from single cell
suspensions of lymph node or spleen cells by negative selection
using hybridoma supernatants (above) directed against MHC-II,
F4/80, B220, NK 1.1, and CD4 or CD8 and goat anti—rat
Dynabeads® (Dynal) at a ratio of 4 beads to 1 target cell. Culture
medium was RPMI, 7% FBS, 100 U/ml penicillin streptomycin
mixture, 0.25 mg/ml fungizone, 10 mM HEPES, and 55 pM
B-mercaptoethanol. To identify OT-I cells in the lung, single
cell suspensions were prepared by flushing the vascular system of
the lung with 10 ml PBS and 10 U/ml heparin (Elkins-Sinn)
through the right ventricle and dissociating the tissue in a 70 pm
Cell Strainer® (Becton Dickinson).

In Vivo Capture of Antibody: OVA Conjugates. B6 or TAP~/~
mice were injected with graded doses of IgG:OVA conjugates
or soluble OVA in the paws subcutaneously. Lymph nodes
(popliteal, inguinal, axillary, and brachial) were harvested 1-4 d
later and the DCs isolated (as above) to test for antigen presenta-
tion to OT-I cells in vitro. 10> T cells were added to graded
doses of CD11c* DCs, CD11c™ nonDCs, or CD11¢c"CD5~ B
cells in round bottom 96-well plates. [*H]thymidine (1 wCi;
Amersham Biosciences) was added at 48=72 h to detect incorpo-
ration into DNA. Data shown are means of triplicates where the
standard deviation was <10% of the mean cpm. To detect
OVA, CDI11c* or CD11c¢™ cells were washed, lysed in SDS
sample buffer for SDS-PAGE, and then aliquots corresponding
to 10° cells transferred to PVDF membranes (Hybond-P; Amer-
sham Biosciences). For immunoblotting, we used HRP-conju-
gated polyclonal rabbit anti-OVA (Research Diagnostics, Inc.)
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diluted in Roti-Block® (Carl Roth) visualized by ECL® (Amer-
sham Biosciences).

Flow Cytometry. Multicolor flow cytometry was used to
monitor three functional responses as described in the following
sections: proliferation of carboxyfluorescein diacetate succini-
midyl ester (CFSE)-labeled T cells as assessed by progressive halv-
ing of the amount of fluorescence per cell; maturation of DCs as
assessed by up-regulation of surface antigens like CD80, CD86,
and MHC II; and induction of T cell effector function, i.e., accu-
mulation of intracellular cytokines and expression of CTL activ-
ity. We used a FACSCalibur™ (BD Biosciences) with subse-
quent analysis of data in CELLQuest™ (BD Biosciences) or
Flow]Jo® (Tree Star).

Labeling of T Cells with CFESE for In Vivo T Cell Proliferative Re-
sponses. OT-I T cells at 107 cells/ml were incubated with
CFSE (Molecular Probes; 5 M) for 10 min at 37°C. An equal
volume of FCS was added, and the cells washed two times
with PBS/0.1% BSA and once with PBS. 2 X 10° labeled OT-I
T cells were injected intravenously into B6 recipients. 24 h
later, antibody:OVA conjugates were injected into all 4 paws
with or without agonistic «CD40 antibody, 100 pg subcuta-
neously. After 3 d, lymph node suspensions were stained for
VBs5.1/52, Va,, and CD8 and evaluated by multicolor flow cy-
tometry.

In Vivo DC Maturation. 100 pg of aCD40 was injected sub-
cutaneously into B6 mice that had or had not received antibody:
OVA conjugates and OT-I T cells. 1-3 d later, lymph node
CD11c* cells were isolated by staining with PE-conjugated
aCD11c and separation with anti-PE microbeads and MACS®.
CD11c* cells were stained for CD80, CD86, or I-AP (MHC 1I)
and evaluated by flow cytometry. In some experiments, the
CD11c* cells were double labeled with biotin-aDEC-205 to
follow DEC-205 high and low expressing subsets of DCs.

In Vivo T Cell Effector Responses.  10° CD45.1" OT-I1 T cells
were purified (above) and injected intravenously into B6 mice.
24 h later, antibody:OVA conjugates with or without aCD40
were injected. 3 and 12 d later, lymph node suspensions were
stained for surface CD45.1, V35 ,,5,, CD62L, intracellular IL-2
(JES6-5H4), or [FN-y (XMG1.2). 5 X 10° lymph node cells
were pulsed in 24-well dishes with the OT-I cognate peptide
(SIINFEKL) for 5 h in the presence of brefeldin A (Sigma-
Aldrich). Cells were then harvested, washed twice with PBS/2%
FBS, and stained for extracellular CD45.1 and V5 ,,5,. These
cells were then fixed and stained for cytokines with the BD Bio-
sciences Intracellular Cytokine Staining Starter Kit as per the
manufacturer’s protocol.

In vivo CTL assays were performed as described previously
(35) by injecting 1:1 mixtures of peptide-pulsed and unpulsed
syngeneic splenocytes (3 X 10° each) labeled with 5 pM
(CFSEM) and 0.5 wM (CFSEP) CFSE, respectively, as described
above. 12 h later, single cell suspensions from lymph nodes were
evaluated by flow cytometry. Specific killing was evaluated by
the reduction of the CFSEM population without any reduction of
the CFSE" population relative to control mice lacking OT-1 T
cells.

Tests for Immune Tolerance. Mice were given OT-I T cells
and IgG:OVA conjugates with or without aCD40 (see above).
12 d after antigen injection, mice were boosted with OVA pro-
tein (50 pg subcutaneously; Calbiochem) suspended in com-
plete Freund’s adjuvant (Difco). 3 d later, mice were killed and
lymph nodes harvested for either in vitro restimulation and in-
tracellular IL-2 and IFN-v staining, or in vivo CTL assays
(above).
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Results

Targeting Protein to DCs In Situ via DEC-205. To ex-
amine the potential role of the DEC-205 endocytic recep-
tor to process proteins through the MHC class I pathway,
we first chemically coupled whole OVA protein to a DEC-
205 antibody. OVA is known to be presented on the
H-2K® MHC class I molecule to CD8" T cells, including
TCR transgenic OT-I T cells (36). After OVA coupling
to rat anti-mouse DEC-205 antibody, free OVA was
removed by purifying the conjugate on protein G col-
umns, yielding mixtures of ~1:1 IgG:OVA conjugates
(MW~200 kD) and unconjugated antibody (Fig. 1 A).
Based on the observed conjugation efficiency and the 4:1
mass ratio of IgG to OVA, we estimated that <10% of the
conjugate consisted of OVA protein.

To verify that the aDEC-205:OVA targeted DCs in
mice, we injected 1 pg of the conjugates subcutaneously
and probed for OVA protein in isolated CD11c™ DC-
enriched (14, 37) and CD11c¢™ DC-depleted, lymph node
cells. Prior work had demonstrated the uptake of rat
aDEC-205 antibody by most DCs (32), but here we fol-
lowed the capture of the OVA protein. Uptake by DCs
plateaued in the draining node within 12—24 h of injection
(Fig. 1, B-D). The 45 kD size of the immunoreactive
OVA in the DCs was similar to native OVA, suggesting
that most of the protein had been released from its conju-
gation to the injected antibody (Fig. 1 B). Injection of 10
g soluble OVA subcutaneously did not yield detectable
antigen in the lymph nodes draining the site of injection
(Fig. 1 C, left lane). With the aDEC-205:OVA conjugate,
OVA was only found in the CD11¢* DC-enriched frac-
tion and not the CD11¢™ DC-depleted cells (Fig. 1 C).
Smaller amounts of OVA were also detected in DCs in dis-
tal sites like lymph nodes and spleen (Fig. 1 D). The
amount of captured OVA corresponded to ~10 ng of pro-
tein per 10° DCs or 10> molecules/DC (Fig. 1 B). We con-
clude that protein coupled to aDEC-205 antibody is effi-
ciently delivered to DCs in situ.

Isolated Lymph Node DCs Present a DEC-205:OVA Con-
jugates on MHC Class I via TAPs. To determine whether
antigen delivered by aDEC-205 to DCs can be processed
for presentation by MHC class I, we first isolated DCs from
lymph nodes and treated them with aDEC-205:OVA in
vitro. The antibody:OVA conjugates were incubated with
CD11c* and CD11c¢™ lymph node cells overnight, excess
conjugate was removed by washing, and then the cells
were cocultured for 2 d with OVA-specific TCR trans-
genic T cells (CD8" MHC class I-restricted OT-I or
CD4*" MHC class II-restricted OT-II T cells). We found
that OVA was presented by CD11c™ DCs on both MHC
class I and class II products (Fig. 2 A). DCs exposed to 0.1
pg/ml of aDEC-205:OVA (with <10 ng/ml OVA pro-
tein) were more active in presenting to MHC class I re-
stricted CD8* OT-I T cells than DCs that had been ex-
posed to 30 pg/ml of soluble OVA (Fig. 2 A). Uptake via
DEC-205 increased the efficiency of presentation relative
to unconjugated OVA at least 1,000-fold for MHC I and
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300-fold for MHC 1II (Fig. 2 A). In contrast, neither
CD19* B cells nor APCs depleted of CD11c¢* and CD197
cells were able to stimulate T cell proliferation above back-
ground levels, even at cell doses 30-fold higher than those
required to observe presentation by DCs (Fig. 2 B). Isotype
control IgG:OVA conjugates were much less active than
aDEC-205:OVA conjugates (Fig. 2 B).

Several additional controls (data not depicted) were per-
formed to verify the function of the DEC-205 receptor in
the presentation of protein conjugated to the corresponding
monoclonal antibody. Because DCs can utilize Fcy recep-
tors to present immune complexes on MHC class I products
(20, 21), we showed that blocking these receptors (at least
CD16 and CD32) with 2.4G2 aFcyR monoclonal antibody
(38) did not reduce presentation of aDEC-205:OVA. To
evaluate another antibody:OVA conjugate that targets the
endocytic system, we used LAMP-1, a lysosome-associated
membrane protein expressed in DCs and other cells. The
aLAMP-1:OVA conjugate was only comparable to isotype
control antibody:OVA in bringing about the presentation of
OVA peptides in the context of either MHC-I or -II by
CD11c* DCs. Conjugation was essential for efficient OVA
targeting since mixtures of unconjugated oaDEC-205 and
soluble OVA were only presented with a comparable effi-
ciency to equivalent doses of soluble OVA, ruling out the
possibility that aDEC-205 was simply enhancing presenta-
tion of nonconjugated OVA. In summary, the DEC-205 re-
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ceptor mediates efficient presentation of protein antigens on
both MHC class I and II products of lymph node DCs.

To establish that MHC class I presentation by aDEC-
205:OVA was TAP dependent, we performed similar ex-
periments with DCs obtained from TAP-deficient mice
(TAP~/~; Fig. 2 C). In the absence of TAP, proteosome-
processed peptides in DCs fail to move into the endoplas-
mic reticulum for association with MHC I molecules. We
found that TAP~/~ DCs were unable to present OVA on
MHC class I after uptake of aDEC-205:OVA, but the
same cells presented OVA on MHC class 11 (Fig. 2 C).
Also, the TAP™/~ DCs could present preprocessed OVA
peptide to MHC class I restricted OT-I T cells (data not
depicted). Thus, antigens endocytosed via DEC-205 are
routed to the MHC class I processing machinery by a path-
way that requires transport of peptides from the cytoplasm
to the endoplasmic reticulum.

In contrast to DCs obtained from the lymph node, DEC-
205 expressing DCs generated from bone marrow progeni-
tors with GM-CSF were only able to present the aDEC-
205:0OVA conjugates to OVA-specific CD4" OT-II T cells
but not CD8" OT-I T cells (Fig. 2 D). Therefore, the type
of DC influences the capacity of DEC-205 to deliver anti-
gens for TAP dependent MHC class I presentation.

DEC-205-mediated MHC Class I Presentation In Vivo.
To determine if DCs targeted with aDEC-205:OVA also
present OVA peptides on MHC class [ in vivo, we next

Receptor-mediated Tolerance to Proteins on MHC 1
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isolated CD11c¢* and CD11c¢™ cells (or B cells enriched
from the CD11c™ population by depleting CD5* T cells)
from mice injected subcutaneously with conjugates or with
soluble OVA, and then we assayed for antigen presentation
to OT-I cells in vitro without further addition of antigen.
After injection of aDEC-205:0OVA, we detected strong
presentation at 4 and 24 h after injection, but only by DCs
(Fig. 3 A, left) and not by CD11c¢™ or enriched B cells (Fig.
3 A, right). The B cells also were inactive when the animals
were given aCD40 antibody (together with antibody:
OVA) to enhance their costimulatory properties (data not
depicted). 100-fold higher doses of soluble OVA relative to
aDEC-205:0VA (which is <10% OVA) were required to
detect presentation, but again the DCs selectively presented
the antigen. This presentation was greater when the cells
were isolated 24 h rather than 4 h after injection (Fig. 3 A).
After injection of aDEC-205:0OVA, presentation was
readily detected for as long as 4 d (Fig. 3 B). The presenta-
tion by DCs in vivo was TAP dependent (Fig. 3 C). In
contrast, antibody:OVA conjugates directed toward other
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Figure 2. Targeting  of
oaDEC-205:0VA to CD1l1c*
lymph node DCs in vitro. (A)
aDEC-205:0OVA elicits stron-
ger presentation than OVA alone
in a dose-dependent manner.
CD11c* cells from C57BL/6
lymph nodes were cultured 18 h
in graded doses of aDEC-205:
OVA or OVA alone, washed,
and cocultured with OT-I or
OT-II T cells before measuring
uptake of [*H]thymidine at 48—
72 h to assess T cell proliferation.
(B) Presentation of peptides de-
rived from aDEC-205:OVA is
restricted to CD11c* lymph
node cells, and not the CD19*
or CD11¢~CD19~ (double neg-
ative) fractions. As in A, but with
aDEC-205:0OVA or the isotype:
OVA conjugate at 10 pg/ml. (C)
Presentation of peptides derived
from aDEC-205:OVA is TAP
dependent. As in B, but CD11c¢*
cells  were prepared from
C57BL/6 or TAP™/~ mice. (D)
Bone marrow DCs are unable to
—/—0DEC-205:0VA present aDEC-205:OVA  on
_O_D !fl?gl\agﬁ):\é)Av " MHC class T products. Cells
from d6 cultures were harvested
and cultured with antibody:OVA
conjugates for 6 h at 10 pg/ml,
washed, and cocultured with T
cells as in panel A. Data are rep-
resentative of three experiments.

APC x 103

DC markers, e.g., MHC-II and LAMP-1, did not enhance
OVA-presentation (Fig. 3 D). In all experiments, there was
little or no capture of the isotype-control:OVA conjugate
(Figs. 3, B-D).

To verify that DCs targeted with aDEC-205:0OVA
could also present antigen to T cells in situ, we transferred
2 X 10° CFSE-labeled, antigen-specific T cells (CD8"
OT-I cells) 1 d before injection with aDEC-205:0VA,
isotype:OVA, or soluble OVA. After 3 d, the lymph nodes
(Fig. 3 E), spleen, and blood (data not depicted) were eval-
uated for OT-I proliferation as assayed by CFSE dilution.
Virtually all of the OT-I cells in lymph node entered cell
cycle and underwent 3—7 cell divisions after a dose of just
1.0 pg of aDEC-205:OVA conjugate (<100 ng OVA)
per mouse (Fig. 3 E). For soluble OVA, at least 400-fold
more protein was required to induce comparable prolifera-
tive responses, and, again, the isotype-control:OVA con-
jugate elicited little or no proliferation (Fig. 3 E). To
prove that DEC-205 but not Fcry receptors were mediat-
ing presentation, we verified that presentation was abol-
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Figure 3. Targeting of aDEC-205:OVA
to lymph node CD11c* DCs in vivo. (A)
Only CD11c¢* lymph node DCs efficiently
present exogenous oDEC-205:OVA, and
to a lesser extent OVA, to OT-I T cells.
C57BL/6 mice were injected with 4.0 pg
(1.0 pg/footpad) of aDEC-205:OVA con-
jugate or 400 pg (100 wg/footpad) of solu-
ble OVA subcutaneously 4 and 24 h before
sacrifice. The CD11c* and CD11¢~CD5~
(B cell) fractions were MACS® sorted from
lymph nodes and evaluated for presentation
to OT-I T cells as in Fig. 2 A. Peptide con-
trols were performed with the highest titra-
tion of APCs (DCs, left; B cells, right) for
each group. (B) As in panel A but CD11c*
DC’s were studied 1 and 4 d after injection
of 4.0 pg (1.0 pg/footpad) of antibody:
OVA conjugates subcutaneously. (C) Pre-
sentation by DCs of OVA peptides from
C57BL/6 but not TAP™/~ mice given 4.0
pg (1.0 pg/footpad) of IgG:OVA conju-
gates subcutaneously 4 d earlier. (D)
aDEC-205:0OVA elicits better presentation
of OVA derived peptides than other DC-
targeted conjugates, each injected with 4.0
pg (1.0 pg/footpad) of IgG:OVA conju-
gates subcutaneously 4 d earlier. (E)
aDEC-205:OVA induces stronger in vivo
proliferation of OT-I T cells than OVA

5 10 20

AR

ished with DCs from DEC-205"/" mice (data not
depicted). In summary, ) DEC-205 efficiently targets anti-
gens for presentation by the exogenous pathway to MHC
class I in vivo.

aDEC-205:0OVA Does Not Mature DCs In Vivo. To
examine whether aDEC-205:OVA treatment results in
DC maturation in the presence or absence of OV A-specific
OT-I T cells, we did FACS® studies of DCs from mice in-
jected with conjugates 1 or 3 d earlier under a variety of
conditions. As illustrated in Fig. 4 A, surface expression of
CD80, CD86, as well as MHC class II products were un-
changed in aDEC-205:OVA-injected mice, whether or
not they received OT-1 T cells. The number of DCs also
did not change in mice given aDEC-205:OVA. However,
coadministration of an agonistic ®CD40 antibody (FGK-

1632

‘ 25ug

alone. C57BL/6 mice were injected intra-
venously with 2 X 10° CFSE-labeled OT-I
T cells and then graded doses of IgG:OVA
conjugates or OVA subcutaneously 24 h
later. 3 d after conjugate injection, lymph
nodes were harvested and the expansion of
CD8*Va,VB5,/5, cells evaluated by flow
cytometry for CFSE dilution. Each panel
represents two or more experiments.

45.5) as an adjuvant activated the DCs in situ over a 3 d pe-
riod and increased their numbers about twofold. The ex-
tent of maturation with «CD40 was similar in the absence
or presence of antigen (aDEC-205:0OVA) or OT-I T cells
(Fig. 4 A). Maturation was detected in CD11¢™ DCs that
had low and high levels of DEC-205, but the levels of
CD86 were higher in the DEC-205 high fraction (Fig. 4
B). In summary, although lymph node DCs in the steady
state express molecules used in T cell activation like CD86,
these DCs do not seem to differentiate further when ex-
posed to aDEC-205:OVA but do differentiate in response
to agonistic «CD40 antibody.

Distinct T’ Cell Responses In Vivo to Antigen Presented in the
Steady State and CD40-based DC Maturation. To follow
the fate of the OT-I T cells that proliferated in response to

Receptor-mediated Tolerance to Proteins on MHC 1
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Figure 4. Maturation of DCs in vivo by
agonistic aCD40 but not by aDEC-205:
OVA. (A) C57BL/6 mice were injected
subcutaneously with PBS or 4.0 pg (1.0
pg/footpad) of aDEC-205:OVA conju-
gate with or without aCD40 (100 g
FGK45.5 subcutaneously), 1 and 3 d before
sacrifice. CD11ct cells were sorted by
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antigen targeted to DCs in vivo, we tracked the transferred
T cells by flow cytometry using a combination of CD45.1
and V5,5, markers, and we compared responses in the
steady state to those following aCD40-induced DC matu-
ration. At 3 d after aDEC-205:OVA injection, we found
strong proliferative responses in the presence or absence
DC maturation (Fig. 5 A). However, aCD40 treated mice
also showed greatly enhanced T cell production of IL-2
and IFN-vy (Fig. 5 B, bottom row).

B

MACS® from lymph nodes and evaluated
by flow cytometry for expression of CD80,
CD86, and MHC class II. Prior to injection
of the OVA conjugate and aCD40, the
mice were given PBS (—) or OT-I (+)
cells. The bold symbols are mean fluores-
cence indices of the CD11c* cells in the
presence of a maturation stimulus, while the
gray-bold at day 3 indicate a significant in-
crease, consistent with maturation. (B) Ilus-
trative FACS® data showing the maturation
of the DEC-205" CD11c™ cells and DEC-
205°CD11c* cells, in mice treated 3 d be-
fore with PBS and a«CD40 as in panel A.

- 0CD40

+aCD40

10000

When we followed the numbers of injected OT-1 T
cells at 3 d and at 12—14 d in several lymphoid tissues (Fig.
6, A and B), we found that aDEC-205:OVA 1in the steady
state first expanded the OT-I cells, but by 12-14 d, the T
cells were virtually entirely absent from lymph nodes,
spleen, or blood (Fig. 6 A, compare left and right panels,
and Fig. 6 B). However, if the aDEC-205:OVA conjugate
was given with aCD40, the OT-I cells expanded relative
to the PBS control (Fig. 6, A and B) or isotype-control:

IFNy

% Max
Count

103

CFSE Cytokine

PBS
- aCD40
|sotype:OVA
+aCD40
- uCD40

+ 0oCD40

] «DEC-205:0VA

Ty
10000

Figure 5. Contrasting responses of OT-I T cells to aDEC-205:OVA in the presence or absence of aCD40-induced DC maturation. (A) aCD40 has
little impact on aDEC-205:OVA induced proliferation of OT-I T cells. As in Fig. 3 E, but mice were or were not given aCD40 (100 pg FGK45.5 sub-
cutaneously). (B) Differential IL-2 and IFN-y production by OT-I T cells in response to isotype:OVA or aDEC-205:OVA with or without aCD40. As
in panel A, but lymph node suspensions were restimulated in vitro with the cognate OT-I peptide for 5 h in the presence of brefeldin A (5 pwg/ml) before

staining for intracellular cytokine. Data are representative of three experiments.
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OVA conjugate (data not depicted). Similarly, when IFN-y
production was monitored by FACS® (Fig. 6 C) or by
ELISPOT assays (data not depicted), the combination of
aDEC-205:0OVA and aCD40 induced a strong expansion
of cytokine producing effectors, whereas cytokine produc-
ing OT-I cells were virtually deleted from the lymph node
when mice had received aDEC-205:OVA (Fig. 6 C). As it
was possible that T cells were being redistributed to tissues
in the steady state rather than undergoing true deletion, we
isolated cells from one large peripheral organ, the lung. In
mice exposed to aDEC-205:OVA, we could not find any

A

oDEC-205:0VA

OT-I T cells in the lung at day 10, but many OT-I cells
were found in the lungs of mice given aDEC-205:0OVA
plus aCD40 (Fig. 6 D). The expanded numbers of cells in
the lymph nodes and lungs in response to aDEC-205:
OVA plus aCD40 included a large fraction of cells lacking
the CD62L selectin for lymph node homing, a typical fea-
ture of activated T cells (Fig. 6 D). In summary, delivery of
protein antigens to DCs leads to the deletion of MHC class
I-restricted T cells, but antigen delivered together with a
maturation stimulus, leads to T cell expansion, production
of IFN-y, and export of T cells to peripheral tissues.

oDEC-205:0VA

PBS [ —acD40 +aCD40 PBS ([ —uCD40 +0CD40 )
- = 0.26% | | 163% | 2.00% 0.37% | | 0.01% | 0.48%
Node = % . #® | # o %
0.17% 0.30% | 0.70% 0.13% 0.01% 0.26%
Spleen _ - »
¥ . 4 -.\.. ¥ %
Blood .-_. 0.06% k 0.08% ) 0.37% 0.06% 0.00% 0.45%
cD45.1 "
VB 552 by 3 ey 12
Figure 6. Deletion of OT-I T
cells in response to aDEC-205:
OVA in steady state. (A)
B C C57BL/6 mice were given
Isotype:OVA CD45.1" OT-I T cells and anti-
PBS M Day 3 T a— \ gen as described in 3E with or
[ Day 12 L PBS s ¢G040 = +2CD40 without «CD40. 3 and 12 d
Isotype.OVA | . later, lymph nodes, spleen, and
Y Vastg inat blood were harvested and evalu-
Isotype:OVA/xCDA0 N ated for OT-I T cells
4DEC-205:0VA (CD45.17VBs 1/5,") by flow cy-
= gy~ Tk e - tometry. (B) Data on the num-
aDEC-205:0VA/0CD40 «DEC-205:0VA ber of OT-I cells, expressed as
0.0 05 1.0 15 2.0 ™ —«cDao +oCDa0 ) the mean percentage of CD8* T
% CD45.1°VB,* Lymphocytes CD45.1 - i cells from three experiments of
: ¥ " . the type shown in panel A. (C)
g o - aCD40-rescued OT-1 T cells
{ are primed and secrete IFN-y.
IFN-y "] C57BL/6 mice were given OT-1

D aDEC-205:0VA
(_ —aCD40 +0.CD40 )
Lymph. ]
Node
CcDs2L Lung
A
» CD45.1
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T cells and antigen as described
in panel A. 12 d after antigen ad-
ministration, lymph nodes were
harvested and OT-I T cells eval-
uated for IFN-7y secretion as de-
scribed in Fig. 5 B. (D) OT-1 T
cells are not present in a periph-
eral non-lymphoid tissue, after
presentation of oDEC-205:
OVA by DCs in the steady state,
in the absence of ®CD40 stimu-
lation. As in panel A, but the
lung was harvested 10 d after an-
tigen administration and the
OT-I cells were evaluated for ex-
pression of CD62L and CD45.1.

Receptor-mediated Tolerance to Proteins on MHC 1
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Antigen Targeting to DCs Induces Peripheral CD8" T Cell
Tolerance. A critical criterion for the induction of periph-
eral tolerance is the inability to respond to rechallenge with
antigen delivered together with a strong adjuvant. To de-
termine whether aDEC-205:OVA treated mice become
tolerant to OVA, we immunized with 50 ng of OVA pro-
tein suspended in CFA 12 d after administration of the
conjugate. 3 d after OVA in CFA immunization, mice
were killed and the immune response was evaluated using
either ELISPOT assays (data not depicted) or FACS® assays
for intracellular cytokine production (Fig. 7 A). Control
mice pretreated with PBS or isotype-contro:OVA were
able to be primed to OVA in CFA (Fig. 7 A). In contrast,
mice pretreated with aDEC-205:OVA were unable to re-
spond to OVA challenge (Fig. 7 A, top right panel in each
group). These same mice could be immunized to non-
OVA proteins, e.g., the PPD antigen in the CFA (data not
depicted). We further assessed formation of eftector CTL
using a recently described in vivo assay for CTL function
(35). Mice tolerized 12 d earlier with aDEC-205:0OVA
could not form CTL, but mice given PBS or the combina-
tion of aDEC-205:OVA with aCD40 produced strong
CTL responses (Fig. 7 B). We conclude that targeting anti-
gens to DCs via DEC-205 in the steady state results in the
induction of peripheral tolerance, with no effector T cell
formation and memory, whereas targeting in the presence
of a DC maturation stimulus leads to immunization.

Discussion

These findings extend the evidence that DCs in periph-
eral lymphoid organs are constitutively processing antigens

B

aDEC-205:0VA

-aCD40

+aCD40

-aCD40

+aCD40
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in the steady state, and that the consequences of this pre-
sentation is peripheral tolerance. With the identification of
an efficient receptor mediated pathway, DEC-205, it is
clear that small amounts of a soluble protein can lead to
presentation on MHC class I and tolerance of CD8* T
cells. Prior studies with soluble proteins have emphasized
the need for high doses of antigen to tolerize the immune
system, and primarily on MHC class I products.

The DEC-205 endocytic receptor has several valuable
roles in antigen uptake and processing by DCs. First, the
receptor targets to MHC class II*, late endosomal/lysoso-
mal compartments in cultured bone marrow—derived DCs
(31). In contrast, most recycling endocytosis receptors traf-
fic through peripheral or early endosomes. The late endo-
somal/lysosomal targeting of DEC-205 is associated with
much more efficient antigen processing and presentation
via the MHC class II pathway. These properties are medi-
ated by the cytosolic domain of DEC-205, particularly an
acidic EDE sequence (31). Second, aDEC-205 antibodies
in small amounts (<1 wg/mouse) can be used to target an-
tigens for presentation by DCs in vivo. When an antigenic
peptide from hen egg lysozyme is engineered into the
heavy chain of the aDEC-205 antibody, the antibody and
peptide is selectively delivered to DCs (32). Here, a DEC-
205 has been chemically conjugated to full length OVA
and delivers the protein selectively to DCs in vivo as well.
Third, we now find that DEC-205 mediates presentation
of protein antigens via the exogenous but TAP-dependent
MHC class I pathway. Uptake via DEC-205 corroborates
that lymph node DCs in the steady state are capable of pro-
cessing antigens onto MHC class 1 (35, 39—42) as well as
MHC class II (18, 32) products. In contrast, we do not ob-

Figure 7. aDEC-205:0VA
induces peripheral tolerance to

aDEC-205:0VA OVA in the steady state. (A)

| C57BL/6 mice were given

PBS CD45.1" OT-I T cells and anti-
gen as described in 3E with or
without «CD40. 12 d after anti-
gen administration, mice were

~aE2D40 boosted with 50 pug of OVA
protein in complete CFA. After
+ aCD40 3 d, lymph nodes were harvested

and OT-I T cells evaluated for

T secretion of IL-2 (top) or IFN-y
(bottom) as in Fig. 5 B. (B)
C57BL/6 mice were treated as
in panel A, but 3 d after adminis-
tration of OVA in CFA, mice
were injected intravenously with
a mixture of CFSE-labeled syn-
geneic splenocytes pulsed with
(CFSEM) or without (CFSEP)
the OT-I cognate peptide (3 X
10° of each). 12 h later the loss of
CFSE" cells in lymph nodes was
evaluated as a measure of specific
CTL activity. Naive mice do
not exhibit any loss of CFSE la-
beled cells (not shown). The re-
sults are representative of three
experiments.
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serve presentation of aDEC-205:0OVA on MHC class I us-
ing DCs derived from bone marrow, although this DC
population presents exogenous proteins on MHC class 11
products (43). In contrast, DCs from lymph node seem
competent in both MHC class I and II presentation in the
steady state in situ, without addition of maturation stimuli.

In the steady state, DEC-205 represents a specific recep-
tor for DCs to induce peripheral tolerance to soluble anti-
gens for both CD4" (32) and CD8* T cells (this paper).
DCs also induce tolerance to cell associated antigens in
vivo (35, 39—41), but the responsible receptors have not
been identified to date. While DEC-205 greatly enhances
presentation of protein antigens, it is possible that the re-
ceptor simply functions to enhance antigen uptake and not
subsequent events required for presentation on MHC class
I. Also, once suitable reagents become available, it will be
possible to assess if other receptors on DCs (see Introduc-
tion) function to enhance antigen presentation and periph-
eral tolerance in vivo. Currently, monoclonal antibodies
are primarily available for the DEC-205 receptor and, as
mentioned above, have been previously shown to target
DCs efficiently and selectively in vivo and enhance MHC
class II presentation. The key new points in this paper are
first that DCs have efficient receptor based mechanisms to
enhance presentation on MHC class I products in vivo,
second that these operate in the steady state, and third, the
consequence of presentation is peripheral tolerance in the
CD8" compartment by a deletional mechanism.

The existence of receptor-mediated uptake mechanisms
should allow DCs to play a valuable role in silencing reac-
tivity to harmless self-antigens and environmental proteins.
A single dose of <0.1 pg of OVA conjugated to aDEC-
205 antibody can delete and tolerize sizable numbers
(>10% of injected OVA-specific CD8* T cells, corre-
sponding to >1% of the ~10% T cells in a mouse. This
number is large, as <1/10,000 naive T cells are typically
able to respond to a specific antigen. As a result, the capac-
ity of DCs to present antigens by the exogenous pathway
greatly exceeds the repertoire of T cells to be activated, at
least with respect to an antigen that is recognized effi-
ciently, i.e., 0.1 nM peptide, as studied here. It will be im-
portant to test other protein antigens and a broader reper-
toire of T cells, as our studies have at this point focused on
the OT-I T cell, to obtain direct evidence on the number
and function of antigen-specific T cells. Nonetheless, our
findings indicate that CD8" T cell tolerance (as well as im-
munity) can be achieved in situ with low doses of intact
protein antigens.

DCs in lymph nodes and spleen express many features
suggesting that they are “immature” i.e., able to capture
antigens but unable to stimulate immunity (44, 45). The
DCs are active in endocytosis (40, 46) and also respond in
vivo to microbial, inflammatory, and T cell stimuli by pro-
ducing cytokines (47) and up-regulating several costimula-
tory molecules (48—50). The studies with a DEC-205:OVA
corroborate that DCs in vivo in the steady state do not
stimulate an immune response even when they are effec-
tively presenting antigen and inducing extensive T cell

proliferation. However, the T cells fail to differentiate and
are deleted unless a maturation stimulus also is provided.
To date, we have concentrated on CD40-based DC matu-
ration. Nevertheless, the findings are consistent with the
view that the immunogenic function of DCs, i.e., the in-
duction of eftector T cells and the development of mem-
ory, requires that at least two sets of events take place. One
involves antigen capture and successful processing to form
MHC—peptide complexes; this occurs in lymph node DCs
in the steady state. The other requirement entails the intri-
cate process of maturation, which changes DCs in many
ways, e.g., increasing T cell costimulatory molecules, in-
ducing cytokines like IL-12 and IL-2, and altering the ex-
pression of chemokine receptors.

Two pathways have been defined for the presentation of
antigens on MHC class I products. The classical or “endog-
enous” pathway originates from newly synthesized proteins
especially those derived from defective ribosomal initiation
products (51). This pathway provides an elegant and estab-
lished mechanism for protective immunity, guiding MHC
class I-restricted cytotoxic T lymphocytes to peptides pro-
duced in infected and malignant cells. By recognizing
MHC—peptide complexes displayed at the cell surface, the
CD8" cytolytic response is focused on cells harboring
pathogens and not on innocent bystander cells (52). A sec-
ond “exogenous” pathway also exists, allowing endocy-
tosed nonreplicating proteins to be presented on MHC
class I. The exogenous pathway a priori could allow nonin-
fected cells to take up protein and become targets for
MHC class I-specific, CD8" cytolytic T lymphocytes. This
potentially serious problem would be averted if the exoge-
nous pathway were primarily expressed in DCs. During in-
fection, the processing of dying infected cells by the exoge-
nous pathway provides a means for DCs to initiate CD8*
T cell immunity to pathogens that do not productively in-
fect them. Likewise, during the steady state, DCs in lym-
phoid organs can use the exogenous pathway to present
self-peptides on MHC class I (16, 40, 53; and this paper)
and thereby induce tolerance. Therefore the induction of
tolerance does not require that all cells be capable of pro-
cessing antigens by the exogenous pathway; rather, the
presence of efficient receptors like DEC-205 for exogenous
presentation in vivo provides a specific mechanism for DCs
to continually delete the peripheral T cell repertoire of re-
activity to low levels of self and environmental proteins.
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