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S u m m a r y  

Mechanisms of tumor development were studied in SCID mice injected with human lymphoid 
cells from Epstein-Barr virus-positive (EBV +) donors. About 80% of peripheral blood 
mononuclear cell (PBMC)-injected animals developed a lymphoproliferative disease associated 
with oligoclonal EBV + tumors of human B cell origin. No change in tumor development rate 
occurred when monocyte-depleted PBMC were inoculated. No tumors developed when purified 
B cells were injected. B cell lymphoproliferative disease was also prevented in most cases when 
PBMC-injected animals were treated with agents that prevent T cell activation, such as cyclosporin 
A. Both CD4 § and CD8 + T cell subpopulations were able to provide putative factor(s) 
necessary for EBV + B cell expansion and progression to tumors. These data suggest that the 
transfer alone of potentially tumorigenic human cells into an immunodeficient environment, 
such as the SCID mouse, might not be sufficient for cell progression to tumor, and raise the 
possibility that chronic activation events could play a major role in the pathogenesis of some 
EBV + lymphomas in the immunocompromised host. 

T he mutant C.B-17 mouse strain (SCID) has a chromo- 
some 16 defect involving the VDJ recombinase system 

that prevents correct TCR and Ig gene rearrangement, and 
results in a virtually complete functional T and B cell deficiency 
(1, 2). Thus, SCID mice behave as relatively inert recipients, 
and can be successfully reconstituted with human fetal lym- 
phoid tissues (3), or adult lymphocytes. If the latter come 
from donors with serological evidence of previous EBV in- 
fection, the mice often develop a fatal lymphoproliferative 
disease (4), associated with the presence of EBV + tumor 
masses within the abdomen. Such lesions are of human B 
cell origin, mostly oligodonal, and contain the EBV genome, 
but differ from classical EBV-related Burkitt's lymphoma in 
that chromosomal alterations, c-myc rearrangement, and ex- 
pression of the common acute lymphocytic leukemia antigen 
(CALLA) (CD10) surface marker could not be demonstrated 
(5-7). These manifestations therefore instead recall some 
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EBV + tumors arising in immunosuppressed humans, for 
which the term "opportunistic tumors" seems to be appro- 
priate (8). 

Thus, the SCID mouse modal could constitute a useful 
tool to explore the pathways leading to lymphoma develop- 
ment in the immunocompromised host. It is widely accepted 
that lymphomagenesis is a multistep process, where several 
consecutive events accumulate until the full malignant pheno- 
type is acquired. In this setting, the role of chromosomal 
translocations and protooncogene activation is relatively well- 
defined, but early incidents promoting B cell deregulation 
and expansion are unclear, and it is possible that several trig- 
gering events are involved. Tumors arising in human PBMC- 
reconstituted SCID mice have been extensively characterized 
for phenotype and genotype (5-7), but the pathways leading 
to lymphoproliferative disease are not defined. Our studies 
showed that the presence of functional T cells in the injected 
PBMC population was absolutely necessary for the progres- 
sion of latently EBV-infected B cells into tumor masses. The 
implications of this observation within the frame of human 
immunodeficiency are far-reaching. 
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Materials and Methods 

Cell Source and Preparation. PBMC were obtained from eight 
healthy adult volunteers undergoing lymphapheresis after their in- 
formed consent. Prior EBV infection was confirmed by testing for 
the presence of serum anti-viral capsid antigen (VCA) and anti- 
Epstein-Barr nuclear antigen (EBNA) IgG. Mononuchar cells were 
isolated by Ficoll-Hypaque gradient centrifugation as reported else- 
where (9), washed four times with RPMI 1640 medium, counted, 
and either used as such, or separated further. 

T and non-T cells (hereafter referred to as "B") were purified 
by double-rosetting with neuraminidase-treated SRBC (10). 
Cytofluorographic analysis of B cell populations with mAbs dis- 
closed <1% contaminating T cells (CD2+), and 60-80% B cells 
(CD19+). Purified T cell populations contained <1% B ceils. 

Monocytes were removed from unfractionated PBMC by adher- 
ence to plastic, followed by leucine-O-methyl ester (Leu-O-ME; 
Sigma Chemical Co., St. Louis, MO) treatment, as reported (11). 
Residual monocytes were then eliminated by immunomagnetic 
treatment with Leu-M3 mAb (Becton Dickinson & Co., Moun- 
tain View, CA) and anti-mouse Ig-coated magnetic beads (Dy- 
nabeads; Dynal, Oslo, Norway), as detailed elsewhere (12). Subse- 
quent cytofluorographic analysis disclosed ~1% contaminating 
monocytes in these populations, and virtual abrogation of the 
proliferative response to anti-CD3 mAb (courtesy of F. Malavasi, 
University of Turin, Italy). Nonetheless, cell viability was not 
affected, and monocyte-depleted populations responded to anti-CD3 
stimulation in the presence of irradiated accessory cells (data not 
shown). As previously reported (11), Leu-O-ME treatment of PBMC 
was also associated with virtual abrogation of non-MHC-restricted 
cytotoxic activity. 

CD4- and CD8-depleted PBMC were obtained by immunomag- 
netic separation of unfractionated PBMC with anti-CD4 and anti- 
CD8 mAbs (Ortho Diagnostics, Raritan, NJ), respectively, as 
reported above. Residual~:ontamination of the depleted phenotype 
in the recovered populations did not exceed 1%. 

Mouse Injection. SCID mice were purchased from IFFA Credo 
(L'Abresle, France), and maintained in our animal facilities under 
pathogen-free conditions. Prophylaxis for Pneumocystis carinii in- 
fection was provided as reported (7). Groups of 7-9-wk-old mice 
of both sexes were inoculated intraperitoneaily with 60-100 x 106 
unfractionated PBMC, monocyte-depleted PBMC (PBMC-Mq~), 
CD4- or CD8-depleted PMBC, or 30-60 x 1@ purified B lym- 
phocytes. The effective number of injected B cells was calculated 
by cytofluorographic analysis of the enriched non-T cell popula- 
tions with anti-CD19 mAb. In a set of experiments, T and B cells 
were separated as above, and injected together (60 x 106 T plus 
10 x 106 B ceils) into the same mice. 

Before injection, and every 10 d thereafter, the mice were bled 
from the retroorbital plexus to monitor human Ig. Serum or plasma 
samples were stored at -20~ until use. The animals were ob- 
served every other day for signs of illness (ruffled fur, respiratory 
distress, inactivity, weight loss, and palpable abdominal masses). 
When they became sick, they were killed by excess ethyl ether 
anesthesia, and autopsied. Interesting tumor masses and tissues were 
divided into three samples: one was immediately frozen in liquid 
nitrogen for DNA studies; one was fixed in paraformaldehydeAa- 
line for histopathologic and immunohistochemical studies; and the 
third was minced to obtain single cell suspensions for immunopheno- 
typic analysis. Follow-up was completed after 36 wk. Survivors were 
killed and autopsied, and tissue samples were routinely collected. 
In one set of experiments, cyclosporin A (CsA; kindly provided 
by G. Corbetta, Sandoz Italia, Milan, Italy; 50/xg/g i.p. daily) treat- 

ment was initiated the day before unfractionated PBMC injection, 
and continued for 30 d. 

Human lg Assays. Human Ig contents in mouse plasma or serum 
samples were assessed by solid-phase ILIA as reported elsewhere 
(10, 11). Briefly, goat anti-human Ig antibody (courtesy of S. Siervo, 
H. S. Raffaele, Milan, Italy; 5/~g/rnl in carbonate/bicarbonate buffer, 
pH 9.6) was coupled to 96-well flexible polyvinyl plates (Falcon, 
Grenoble, France), and the wells were saturated with 3% BSA 
(Sigma Chemical Co.) in PBS. After three washes, 50/~1 of serial 
sample dilutions were added in triplicate to the wells. The plates 
were left to stand for 3 h at room temperature, washed, and then 
incubated with l~l-labeled goat anti-human lg F(ab)z (Amersham 
Corp., Arlington Heights, IL; sp act 19-74 TBq/mM) for 4 h at 
room temperature. Finally, the plates were washed thoroughly, and 
individual wells counted in an LS 1801 gamma-counter (Packard, 
Grove Hills, IL). Serum Ig contents were evaluated against a refer- 
ence curve obtained by doubling dilutions of a standard human 
serum containing a known amount orig. Standard curves in these 
ILIA were linear between '~10 and 500 ng/ml. When necessary, 
samples were further diluted so that Ig levels would fall into this 
range. 

Statistical Analysis. Data were managed using the Mann- 
Whitney test. 

Results 

Tumors developed in 31 of 38 PBMC-injected animals (Table 
1), and usually consisted of multiple masses at the hepatic 
hilum, lower splanchnic region, and within the mesenteric 
tissue. Supradiaphragmatic lesions (usually perithymic) were 
rare. Histologic and genotypic analysis disclosed that these 
tumors were oligodonal expansions orB cell origin most likely 
sustained by the few EBV-infected B cell precursors present 

Table 1. Tumor Development in SCID Mice Injected 
Intraperitoneally with Different PBMC Subpopulations from 
EBV + Donors 

Mice with 
Injected tumors Latency 
population (percent)* (wk)* 

PBMC (38) 31 (81.6) 8.3 _+ 2.5 (6-17) 
PBMC-Mq~ (7) 5 (71.4) 7.2 _+ 1.1 (6-8) 
B (21)  0 - 

T + B (12) 9 (75.0) 9.4 +_ 3.0 (5-14) 
CD8-depleted (8) 8 (100) 7.8 + 3.0 (4-14) 
CD4-depleted (4) 3 (75.0) 18.3 + 6.4 (11-23)s 
PBMC + CsA (10)/I 2 (20.0) 12,16 

* The number of animals developing tumor, as judged by autoptic, histo- 
logic, and genotypic evidence in a 36-wk follow-up is reported. 
* Mean _+. SD (range in parentheses). 
S p = 0.03, according to Mann-Whitney test, compared with 
CDS-depleted PBMC. 
li PBMC-injected mice were treated with CsA (50/~g/g/d) as detailed 
in Materials and Methods. 
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in the inoculum, even though the recruitment of newly  in- 
fected B cells could not be excluded (data not shown). Their 
histologic, immunophenotypic, and genotypic features were 
completely similar to those described by other workers (5-7). 

Tumor development was accompanied by high levels of 
human Ig in mouse serum, that were measurable early after 
PBMC injection (Fig. 1). However, at a given follow-up time, 
there was considerable variation, with up to fivefold differ- 
ences in Ig values among mice injected with PBMC from 
the same donor (data not shown). In line with a previous 
report (7), tumor progression in most animals was associated 
with the appearance of a distinct oligoclonal IgG pattern in 
serum (not shown). Preliminary investigations into the 
specificity of these Ig seem to indicate that a small fraction 
is directed against mouse antigens (A. Veronesi, et al., manu- 
script in preparation). 

Removal of monocytes did not change the tumor develop- 
ment rate (Table 1, PMBC-M~); moreover, compared with 
unfractionated PBMC, human Ig production in mouse serum 
was enhanced (Fig. 1). This latter finding was not surprising, 
as PBMC treatment with Leu-O-ME to remove accessory 
cell function also selectively ablates NK cells (11, 13), which 
are potent modulators of B cell activity (14, 15). 

On the other hand, 21 mice inoculated with purified B 
cells showed no tumors over a 36-wk follow-up (Table 1), 
and plasma human Ig levels never exceeded 10 #g/ml  (Fig. 
1). These findings were unexpected, as we thought that 
removal of residual T cell control would indeed favor the ex- 
pansion of latently infected B cells. Moreover, compared with 
unfractionated PBMC, much higher numbers of EBV-infected 
precursors were likely present in the injected B cell population. 

That EBV-infected precursor damage or loss during the 
B cell purification procedure might be responsible for this 

failure is unlikely, because tumors developed after injection 
of a mixture of purified T and B cells into the same animal 
(Table 1). These data dearly indicated that the presence of 
T cells within the injected population was necessary for tumor 
development. As shown in Table 1, both CD4 + and 
CD8 + subpopulations suf~ced in providing the putative help 
for B cell expansion. However, tumor appearance was 
significantly delayed (Table 1), and serum human Ig levels 
were much lower in mice injected with CD4-depleted PBMC, 
compared with those inoculated with CD8-depleted PBMC 
(130.2 _+ 93.0/zg vs. 11,060 _+ 4,403/zg 40 d after injection, 
respectively). 

To gain an insight into the relevance of the T cell compo- 
nent in lymphomagenesis, PBMC-injected mice were also ad- 
ministered agents aimed at preventing T cell activation. CsA 
treatment strongly reduced human Ig release in mouse serum 
(Fig. 1), and accordingly affected tumor development rate 
as well as latency. Compared with untreated controls, only 
2 of 10 CsA-treated, PBMC-injected mice developed tumors, 
and with a significant delay (Table 1). 

Discuss ion 

This study confirms and extends previous observations in 
human PBMC-injected SCID mice (5-7), and shows that B 
cell expansion and tumor development are absolutely depen- 
dent on the presence of functional T lymphocytes in the in- 
oculum. Thus, it seems reasonable to conclude that T cell-de- 
rived factor(s) probably play a major role in sustaining B cell 
progression to tumor in the human PBMC-injected SCID 
mouse model. After PBMC transfer into SCID mice, it is 
probable that T cells are activated and eventually produce 
cytokines (16, 17), which in turn stimulate proliferation and 
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Figure 1. Kinetics of human Ig production in serum of 
SCID mice injected with different PBMC subpopulations. 
SCID mice were injected intraperitoneaUy with unfractionated 
PBMC (e), monocyte-depleted PBMC (D), and purified B 
cells (A). In a set of experiments, PBMC-injected mice (O) 
were also injected with CsA as detailed in Materials and 
Methods. Results represent mean values (_+ 1 SD) obtained 
in 32, 7, 21, and 10 animals, respectively. 
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differentiation of B cells, induding EBV-infected lymphocytes. 
In the absence of T cell-derived factors, the destiny of the 
injected B cells is unclear. In this regard, it is worth recalling 
that NK activity in SCID mice is maintained or even increased 
(18). Thus, in the absence of T cell-derived promoting factors, 
it is possible that the very few EBV-infected precursors present 
in the inoculum (estimated between * 10 and 30 in 100 x 
106 unfractionated PBMC [19]) are rapidly eliminated by the 
host's natural immunity effector mechanisms. 

It is also noteworthy that both CD4- and CD8-depleted 
PBMC injections were associated with lymphoproliferative 
disease. It is now clear that CD8 + lymphocytes as well can 
produce cytokines, albeit to a lesser extent (20). This different 
behavior probably underlies the significant delay in tumor 
onset observed in SCID mice inoculated with CD4-depleted 
PBMC, compared with animals injected with unffactionated 
or CD8-depleted PBMC. 

Data obtained with CsA were most surprising, since CsA, 
as well as other immunosuppressive regimens, is associated 
with an increase in B cell lymphoma frequency (21). Moreover, 
the presence of CsA in culture promotes an efficient in vitro 
generation of EBV + lymphoblastoid cell lines by preventing 
T cell control of infected B cells. In addition to this effect 
on T cells, CsA also modifies the function of other cytotoxic 
populations, such as NK cells, by potentiating their genera- 
tion from bone marrow precursors (22). Thus, this activity 
could possibly explain in part the decreased tumor rate in 
PBMC-injected, CsA-treated animals. However, it is also very 
likely that the decrease in the amount of human Ig in the 
serum of CsA-treated mice could be due to impaired cytokine 
release by transferred T cells (23). Further investigation into 
this complex network of interactions is necessary, as CsA is 
also known to alter B lymphocytes, and render them resis- 
tant to immune cytolysis (24). 

The relevance of our findings to lymphomagenesis in human 
immunodeficiency disorders is thought-provoking. Non- 
Hodgkin's lymphomas, mostly EBV + immunoblastic lym- 
phomas with no evidence of c-myc deregulation, are a major 
concern in organ transplant recipients undergoing im- 
munosuppressive therapy to prevent graft rejection (22), as 
well as in HIV-infected patients (25, 26). The early events 
that promote B cell deregulation are mostly unclear. EBV 
infection, in conjunction with a deficient T cell control of 
infected cells, could constitute a proper trigger. On the other 
hand, chronic antigenic stimulation, which in these patients 
is obviously provided by foreign HLA molecules or antigens 
derived from opportunistic pathogens, might also play a role. 
Indeed, lymphoma development is a common finding even 
in immunocompetent animals undergoing continuous ad- 
ministration of foreign antigens (27, 28). 

The relative contribution of each of these triggering factors 
to lymphomagenesis is not readily individuated. The present 
findings indicate that complete removal of T cell control is 
not sufficient for EBV-infected B cell expansion and progres- 
sion to tumor in an immunodeficient host. Indeed, the im- 
portance of a strong T cell stimulatory component for B cell 
tumor development clearly emerges in the SCID mouse model. 
In a different setting, our data might also provide a reason- 
able explanation for the extremely high lymphoma risk in 
patients undergoing immunosuppression through maneuvers 
that also entail possible T cell stimulation, such as anti-CD3 
mAb treatment (29). It is hoped that further work in this 
field will open new avenues of understanding and treatment 
of the B cell malignancies occurring in the immunosuppressed 
patient. 
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