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Mast cells, polymorphonuclear (PMN) 1 leukocytes, monocytes, and macro- 
phages convert arachidonic acid to 5(S), 12(R)-dihydroxy-eicosa-6,14 cis-8,10 
trans-tetraenoic acid or leukotriene B4 (LTB4) by 5-1ipoxygenation and subse- 
quent enzymatic hydration of the 5,6-epoxy-eicosatetraenoic acid derived from 
5-hydroperoxy-eicosatetraenoic acid (1-5). When platelets are present with the 
leukocytes, platelet 12-1ipoxygenation of 5-hydroxy-eicosatetraenoic acid (5- 
HETE) contributes significantly to the generation of LTB4 (4, 6). LTB4 stimu- 
lates PMN leukocyte chemotactic and chemokinetic migration (7-11), release of 
lysosomal enzymes in the presence of cytochalasin B (7, 12-14), adherence (15), 
aggregation (9, 16), expression of CSb receptors (17), and biochemical pathways 
that are specific prerequisities for the activation of PMN leukocytes (18, 19). 
Since the optimal expression of several activities of PMN leukocytes was elicited 
by different concentrations of LTB4 (7, 13, 15-17), it was postulated that either 
the extent of saturation of a single class of receptors initiated different functions 
or that a distinct subset of receptors with a different affinity for LTB4 was 
selectively coupled to each function. 

Receptors for LTB4 have been defined recently by quantifying the binding of 
[3H]LTB4 to human neutrophils (20, 21). Scatchard analysis of the binding data 
revealed 2.6-4.0 × 104 receptors per neutrophil with one apparent dissociation 
constant (Kd) of 1.1-1.4 × 10 -8 M. Other chemotactically active products of the 
5-1ipoxygenation of arachidonic acid inhibited by 50% the binding of [3H]LTB4 
to the neutrophils at concentrations that evoked half-maximal chemotactic re- 
sponses, whereas the chemotactically inactive leukotriene C4 (LTC4) did not 
compete with [3H]LTB4 for binding to the receptor. The chemotactic peptide 
N-formyl-methionyl-leucyl-phenylalanine (fMLP) and chemotactic fragments of 
C5 (C5fr) also failed to inhibit the binding of [SH]LTB4 to neutrophils, which 

This work was supported in part by grants 1 RO1 HL 31809 and 1 PO1 19784 from the National 
Institutes of Health. D. W. Goldman is an Investigator of the Arthritis Foundation. 

Abbreviation used in this paper: BSA, fatty acid-free bovine serum albumin; CSfr, chemotactic 
fragments of C5; fMLP, N-formyl-methionyl-leucyl-phenylalanine; HBSS, Hanks' balanced salt solu- 
tion with phenol red; 5-HETE, 5-hydroxy-eicosatetraenoic acid; hpf, high power field; HPLC, high 
performance liquid chromatography; LT, leukotriene; LTD,, 5-hydroxy-6-S-cysteinyl-glycyl-eicosa- 
tetraenoic acid; OVA, ovaibumin; PMN, polymorphonuclear; 5(S), 12(S)-6 trans-di-HETE, 5(S), 12(S)- 
di-hydroxy-eicosa-6,8,10 trans- 14 cis-tetraenoic acid. 

J. ExP. MED. © The Rockefeller University Press • 0022-1007/84/04/1027]15 $1.00 1027 
Volume 159 April 1984 1027-1041 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/159/4/1027/1664843/1027.pdf by guest on 18 April 2024



1028 POLYMORPHONUCLEAR LEUKOCYTE RECEPTORS 

established that the subset of  chemotactic receptors for LTB4 is distinct from 
those that mediate the responses to peptide chemotactic factors (20). The  
availability of  purified [SH]LTB4 with a specific activity 7-10 times higher than 
that used in the initial characterization of  the LTB4 receptor has now permit ted 
the demonstrat ion of  two classes of  LTB4 receptors on human PMN leukocytes 
that differ in affinity for [3H]LTB4 by ~150-fold. A critical functional role is 
suggested for the high affinity receptors, since they exhibit a Kd similar to the 
concentration of  LTB4 required to evoke a half-maximal PMN leukocyte chem- 
otactic response and are eliminated selectively by chemotactic deactivation of  
PMN leukocytes to LTB4. 

Mater ia ls  a n d  M e t h o d s  
Materials. Hanks' balanced salt solution with phenol red (HBSS) (M. A. Bioproducts, 

Walkersville, MD), n-butyl phthalate, fatty acid-free bovine serum albumin (BSA), fMLP, 
phenolphthalein glucuronic acid (Sigma Chemical Co., St. Louis, MO), ovalbumin (OVA) 
(Miles Laboratories, Inc., Elkhart, IN), [5,6,8,9,11,12,14,15(N)-SH]LT B4 (180-221 Ci/ 
mmol; Amersham Corp., Arlington Heights, IL), Ficoll-Hypaque (6 g/100 ml dextran 70 
in normal saline; Pharmacia Fine Chemicals, Piscataway, NJ), dinonyl phthalate (ICN 
Pharmaceuticals, Inc., Plainview, NY), cytochalasin B (Aldrich Chemical Co., Milwaukee, 
WI), and Hydrofluor (National Diagnostics, Inc., Somerville, NJ) were obtained from the 
suppliers noted. All organic solvents were redistilled from glass (HPLC grade; Burdick & 
Jackson Laboratories, Inc., Muskegon, MI). Partially purified chemotactic fragments of 
C5 (C5fr) were prepared from yeast-activated human serum as described (7, 10). Synthetic 
LTD4 (5-hydroxy-6-S-cysteinyl-glycyl-eicosatetraenoic acid), LTB4, and 12(S)-LTB4 were 
kindly supplied by Dr. J. Rokach of Merck-Frosst Laboratories, Dorval, Canada. 5-HETE 
and the 5(S), 12(S)-isomer of 6 trans-LTB4 [5(S), 12(S)-6 trans-di-HETE] were biosynthet- 
ically prepared and purified by reverse-phase high performance liquid chromatography 
(HPLC) as described (20). 

Preparation of Human PMN Leukocytes. Human PMN leukocytes were prepared as 
described (22) from sodium citrate-anticoagulated venous blood of normal donors. Eryth- 
rocytes were removed by dextran sedimentation followed by a 20-s hypotonic lysis with 
20 vol of ice-cold distilled water. Isotonicity was restored by adding 0.6 M KCl. PMN 
leukocytes of 96% or greater purity were obtained by centrifugation of mixed leukocytes 
on FicolI-Hypaque cushions (23). The purified PMN leukocytes were suspended at 
concentrations of up to 5 x 107 per ml in HBSS containing 0.1 g/100 mi OVA and 10 
mM Hepes (pH 7.3) (HBSS-OVA), stored at 4°C, and used within 1-2 h. 

Measurement of the Binding of [SH]LTB4 to PMN Leukocytes. Methanol solutions of [3H]- 
LTB4 and nonradiocative fatty acids were reduced nearly to dryness in separate glass 
tubes under nitrogen and taken up in HBSS-OVA at 4°C, immediately before use as 
described (20). In each experiment, 5 + 3 x 10 -14 tool (mean -+ range) of [SH]LTB4 and 
different concentrations of each nonradioactive fatty acid were incubated with replicate 
suspensions of 2 x 106 or 1 x 10 7 PMN leukocytes in a final volume of 0.5 ml for 40 min 
in an ice water bath. The amount of radioactivity bound to the PMN leukocytes was 
determined by layering each suspension on 0.3 ml of a mixture of n-butyl phthalate and 
dinonyl phthalate (7:2, vol/vol) in a 1.5-ml polypropylene tube and centrifuging for 30 s 
at 8,000 g in a Beckman microfuge B (Beckman Instruments, Inc., Fullerton, CA). The 
tip of each polypropylene tube containing the PMN leukocyte pellet was cut off with a 
razor blade, the contents of the tip were resuspended with a Pasteur pipette in 4 ml of 
Hydrofluor, and the amount of radioactivity in the pellet and 0.1 ml of the upper aqueous 
layer was determined separately. 

In a few experiments, [aH]LTB4 was incubated with 2 x 107 PMN leukocytes in 1 ml 
of HBSS-OVA for 60 min on ice. The suspensions then were acidified to pH 3.5 with 
glacial acetic acid, 1 vol of isopropanol was added, and the suspension was extracted twice 
with 1 vol of ethyl ether and once with 1 vol of chloroform. The organic layers were 
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pooled and dried under a stream of nitrogen, and the extracted lipids were redissolved in 
chromatography solvent for analysis. 

HPLC. LTB4, other 5,12-di-HETE isomers, and 5-HETE were resolved by reverse- 
phase HPLC on a 4.6-mm × 25-cm column of 10 t~m octadecyl(C 18)-silane (Ultrasil; Altex 
Scientific Inc., Berkeley, CA) that was developed isocratically at a flow rate of 1.7 ml /  
rain with methanol/water/acetic acid (70:30:0.03, vol/vol, titrated to pH 4.5 with 
ammonium hydroxide) (3). Analysis of the stock solutions of [SH]LTB4 revealed that 99% 
of the radioactivity cochromatographed with a synthetic LTB4 standard and the remaining 
1% eluted at several earlier times. The purified and synthetic 5,12-di-HETE isomers and 
5-HETE contained <3% optically determined impurities. The [SH]LTB4 also was con- 
verted to the methyl ester and subjected to standard-phase HPLC on a uPorasil column 
(Waters Associates, Milford, MA) that was developed isocratically with hexane/2-propanol 
(91:9, vol/vol) at 1.3 ml/min and again was shown to contain <1% radiochemical 
contamination. In three separate studies, 97.2 _+ 2.4% (mean _ 2 SD) of the [3H]LTB4 
was bound by specific rabbit anti-LTB4 serum and >98% was displaced by synthetic LTB4 
(3). 

Analysis of Binding Data. The specific activity of the [3H]LTB4 in each incubation tube 
was determined by dividing the total cpm recovered from the cell pellet and the aqueous 
layer by the total number of moles of LTB4 present in the incubation tube. The cpm 
bound to the PMN leukocytes divided by the specific activity and the total volume of the 
incubation suspension equaled the concentration of bound LTB4. The concentration of 
free LTB4 was determined by dividing the cpm in the aqueous layer by the specific 
activity. The binding data were fit by a method of weighted nonlinear least squares to the 
ligand-binding model developed by Feldman (24) using a Wang 2200 series computer 
(Wang Laboratories, Inc., North Chelmsford, MA). The curve-fitting program is based 
on the LIGAND program described by Munson and Rodbard (25) and uses the Newton- 
Gauss-Marquardt-Levenberg algorithm as described by Fletcher and Schrager (26) to find 
those values for each parameter which minimized the weighted sum of the squares. The 
variance for the bound LTB4 was determined to be 5% of the concentration of bound 
LTB4 across the range of free LTB4 concentrations tested. The ~extra sum of squares" 
test (F statistic) (25) was used to compare the aptness of fit to models of one and two 
classes of receptors. Nonspecific binding was estimated by the curve-fitting program and 
was subtracted from the total binding data to yield the specific binding data. Analysis of 
the data collected for inhibition of [3H]LTB4 binding by LTB4 analogs was performed 
using the curve-fitting program by setting the association constants for LTB4 binding 
equal to the values previously determined in the absence of a competitive ligand and then 
calculating nonspecific binding, the total concentration of the high and low affinity 
receptors, and the association constants of the competing ligand for each of the receptors. 

Deactivation of Human PMN Leukocyte Chemotaxis. Replicate suspensions of 1 x 107 
PMN leukocytes/ml of HBSS-OVA were incubated with a range of concentrations of 
LTB4 or buffer alone (control PMN leukocytes) for 10 rain at 37°C. At the end of the 
incubation, 5 vol of ice-cold HBSS containing 0.2 g/100 ml fatty acid-free BSA (HBSS- 
BSA) were added to each suspension of PMN ieukocytes. The PMN leukocytes were 
washed twice with HBSS-BSA and three times with HBSS at 4°C. The LTB4-treated 
PMN leukocytes were suspended at 2 × 107 per ml of HBSS-OVA on ice. The total and 
nonspecific binding of [3H]LTB4 was determined by incubating 4 x 10 B PMN leukocytes 
with 1 × 10 -1° M [SH]LTB4 in 0.5 ml HBSS-OVA in the absence and presence of 1.5 uM 
LTB4, which displaced 88.4 ± 3.6% (mean ± SD, n = 7) of the total binding. Subtracting 
the nonspecifically bound radioactivity from the total bound radioactivity gave the specific 
binding component. The amount of radioactivity specifically bound to control PMN 
leukocytes pretreated at 37°C in HBSS-OVA alone was defined as 100%. 

The chemotaxis and lysosomal enzyme release of PMN leukocytes preincubated with 
LTB4 or in buffer alone (controls) were assessed in parallel with the binding of [aH]LTB4. 
Chemotaxis was performed in modified Boyden chambers (Adaps, Inc., Dedham, MA) 
assembled with micropore filters of 3 #m pore diameter (Sartorius, Bottingen, Federal 
Republic of Germany) (22, 27). PMN ieukocytes were enumerated microscopically in 10 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/159/4/1027/1664843/1027.pdf by guest on 18 April 2024



1030 POLYMORPHONUCLEAR LEUKOCYTE RECEPTORS 

high power fields (hpf), 5 from each of duplicate filters, at a depth of 80-100 t~m from 
the cell source. The depth for counting was selected to achieve a background count of 
three to six PMN leukocytes per hpf. The response is expressed as net PMN ieukocytes 
per hpf, after subtraction of background migration in control chambers lacking a stimulus. 
The altered chemotactic migration of PMN leukocytes pretreated with LTB4 is expressed 
as a percentage of the migration of replicate portions of PMN leukocytes preincubated in 
HBSS-OVA alone. 

The stimulation of release of B-glucuronidase from lysosomal granules was determined 
by incubating replicate suspensions of 2 x 10 ~ PMN leukocytes in 0.4 ml of HBSS-OVA 
containing the stimulus or buffer alone and 5 t~g/ml of cytochalasin B at 37°C for 30 
min. Each supernate was assayed colorimetrically for B-glucuronidase activity as described 
(7). The amount of release of/3-glucuronidase is expressed as a percentage of the total 
amount of activity present in replicate suspensions of PMN ieukocytes that had been 
disrupted by sonication on ice. The percentage of O-glucuronidase released in the absence 
of a stimulus was subtracted to determine the net percentage release. The altered release 
of/3-glucuronidase by PMN ieukocytes pretreated with LTB, is denoted as a percentage 
of the release by PMN leukocytes preincubated in HBSS-OVA alone. 

The statistical significance of binding parameters for deactivated PMN leukocytes 
relative to the binding parameters for untreated PMN leukocytes was determined by a 
standard t test for unpaired populations of samples with unequal variance. The statistical 
significance of the results of studies of the function of deactivated PMN leukocytes relative 
to the data for controls was determined by a standard two-sample t test for paired samples. 

Results 
Characteristics of the Binding of [3H]LTB4 by Human PMN Leukocytes. PMN 

leukocytes were  incubated  with 1 x 10 -1° M [3H]LTB4 for  40 min at 0°C in the 
presence  and  absence o f  nonradioact ive  LTB4 to quantify specific binding. T h e  
binding of  [3H]LTB4 in the absence o f  unlabeled nonradioact ive  LTB4 was rapid,  
reaching  a plateau level within 10 min (Fig. 1). T h e  nonspecific b inding o f  [~H]- 
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FIGURE 1. Time course of the human PMN leukocyte binding and release of [SH]LTB4. 
Binding was quantified in the absence (0) and presence (&) of 1.5/~M nonradioactive LTB4. 
The dissociation of [SH]LTB4 was assessed by incubating PMN leukocytes with [SH]LTB4 for 
45 rain and then adding nonradioactive LTB4 (as indicated by the arrow) to a final concentra- 
tion of 1.5 #M to block rebinding of dissociated [SH]LTB4 (O). 
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LTB4 to PMN leukocytes was defined as that detected in the presence of 1.5 vM 
nonradioactive LTBa. In seven experiments where the effect of  1.5 #M nonra- 
dioactive LTB4 was assessed, the extent of  inhibiton of the total binding of [SH]- 
LTB4 to PMN leukocytes was 88.4 _+ 3.6% (mean + SD) after 40 min at 0°C. 
Under the same binding conditions, the rate of  degradation of [SH]LTB4 was 
slow compared with the rate of  binding. When [SH]LTB4 was incubated with 2 
x 107 PMN leukocytes for 60 min at 0°C and recovered by extraction, >95% of 
the radioactivity cochromatographed with synthetic LTB4 on reverse-phase 
HPLC, as compared with [3H]LTB4 from the stock solution where 99% of the 
radioactivity cochromatographed with the synthetic standard. 

The specific binding of [3H]LTB4 by PMN leukocytes reached a plateau level 
by 10 min, which remained constant for up to 150 min at 0°C (Fig. 1). When 
1.5 #M nonradioactive LTB4 was added to PMN leukocytes that had been 
incubated with [~H]LTB4 for 45 min at 0°C, 77.7 _ 4.8% (mean 4- SD, n = 3) 
of  the specifically bound [3H]LTB4 was dissociated within 10 min after the 
addition of the LTB4 and the remainder was dissociated at a slower rate (Fig. 1). 
By 105 min after the addition of 1.5 #M LTB4, 89.6 + 2.0% of the specifically 
bound [3H]LTB4 had been released from the PMN leukocytes. 

The rapid association and dissociation of the bulk of the [3H]LTB4 specifically 
bound to PMN leukocytes suggested that the system was at equilibrium in the 
standard binding studies and that equilibrium binding parameters could be 
derived accurately. The total amount of LTB4 bound to PMN leukocytes was a 
function of  the free concentration of LTB4 (Fig. 2 A). Whereas total and nonspe- 
cific binding increased with the concentration of LTB4 up to 1,600 nM, specific 
binding was saturated at LTB4 concentrations of 800 nM and greater. The 
specific binding of LTB4 at 1,600 nM was 108 4- 23% (mean 4- SD, n = 5) of  the 
specific binding at 800 nM. Computer analysis of the concentration dependence 
of total binding (Fig. 2A) revealed that the data were best fit (P < 0.01) by a 
model consisting of two different classes of binding sites for LTB4 and a 
nonspecific binding component. The biphasic nature of the Scatchard plot of 
the values for specific binding of LTB4 (Fig. 2B) supported the suitability of a 
model of two classes of receptors for the binding of LTB4 to PMN leukocytes. 
The high affinity and low affinity binding sites had mean Kd values of 3.9 X 
10 -1° M and 6.1 x 10 -8 M, respectively, for LTB4 (Table I). There  were 4.4 4- 
1.2 x l0 s high affinity receptors (mean 4- SD) and 2.7 4- 1.8 x 105 low affinity 
receptors per PMN leukocyte. 

Structural Determinants of the Binding of [3H]LTB4 to PMN Leukocytes. The 
inhibition of binding of [3H]LTB4 to PMN leukocytes by chemotactically less 
potent 5,12 di-HETE isomers was assessed in parallel with studies of chemotactic 
activity (Fig. 3 and Table I). Both of the other 5,12 di-HETE isomers inhibited 
by up to 100% the specific binding of [3H]LTB4 to PMN leukocytes. Further, 
the concentrations at which the isomers inhibited by 50% the binding of [3H]- 
LTB4 (ICs0 values) were in the same relative rank order as the concentrations 
required to achieve 50% of the maximal chemotactic response (EC~0) (Fig. 3 and 
Table I). Hill coefficients of  0.61 4- 0.09, 0.78 4- 0.04, and 0.94 4- 0.13 (mean 
+ SD, n = 3) were derived from the inhibition of [~H]LTB4 binding by LTB4, 
12(S)-LTB4, and 5(S),12(S)-6 trans-di-HETE, respectively. The Hill coefficients 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/159/4/1027/1664843/1027.pdf by guest on 18 April 2024



1032 

t /)  
W 

8 
b.I 
--J 

Z 

n 

n 

i 
t ~  

i 
O 
O 

POLYMORPHONUCLEAR LEUKOCYTE RECEPTORS 

30- 

20- 

I0- 

,,J / - "  A / . . - "  

t l  / / ~ 

. o , . , o  

" - '  - - - 1 - - -  

i 

,oo ~ 3~o ~' ~oo ~o  ' ' "tO0 800 

LF'UKOTRIENI=' B4 CONCENTRATION (NANOMOLAR) 

0.4 .  

0.3'  

h 

m 

0 . 2 -  

O . J "  • 

I J I I I ~ 1  
2 • 6 8 io ,~ ,,  i~ 

BOUND (NANOMOI.AR) 

FIGURE 2. Concentration dependence of the binding of [SH]LTB4 to human PMN leuko- 
cytes. (A) Each data point represents a single determination at each LTB4 concentration. We 
used binding affinities ofKdl = 3.57 × 10- M and Ka, = 7.55 × 10 -8 M and receptor densities 
of 3,670 and 334,000 receptors per PMN leukocyte, respectively, to construct the solid line 
that represents the best fit of the total binding data by the nonlinear least squares curve-fitting 
program. Specific binding (A) was determined by subtracting nonspecific binding ( - - - - - )  of 

~ _ .  7 1 2.22 X 10- pmol per 10 PMN leukocytes x M- from the total binding(Q). (B) The Scatchard 
plot was derived from the specific binding data in A. The solid line was constructed from the 
characteristics of binding determined in A, the units for which were expressed in terms of the 
molar concentration of bound LTB4. B/F,  bound/free concentration of LTB4. 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/159/4/1027/1664843/1027.pdf by guest on 18 April 2024



GOLDMAN AND GOETZL 1033 

TABLE I 

Correlation of the Binding Affinity of LTB4 and Other Isomers of 5,12 di-HETE with Chemotactic 
Potency 

Dissociation constants* Chemotactic 
Ligand 

High affinity (Kdl) Low affinity (Kd~) potency ECs0* 

M M 

LTB4 3.9 ± 2.4 x 10 -I° 6.1 ± 2.9 x 10 -8 3.0 x 10 -9 
12(S)-LTB4 2.2 ± 0.4 x 10 -9 2.0 ± 1.6 x 10 -~ 6.3 x 10 -8 
5(S),12(S)-6 trans-di-HETE 5.8 ± 2.7 X 10 -8 - -  0.8-1.0 X 10 -6 

* The  dissociation constants were determined by fitting the binding data to one- and two-site binding 
models using a nonlinear least squares curve-fitting program. The  binding data were best fit by a 
two-site model for LTB4 and 12(S)-LTB4 (P < 0.001) and by a one-site model for the 5(S),12(S)-6 
trans-di-HETE, which yielded a single Kd. 

* The  ECs0 values for the stimulation of human PMN leukocyte chemotaxis by LTB4 and 5(S), 12(S)- 
6 trans-di-HETE had been previously determined (10, 11), while that for 12(S)-LTB4 was derived 
from results of three current  studies, where the mean + SD was 6.3 ± 2.9 × 10 -s M. 
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FIGURE 3. Inhibition of the specific binding of [SH]LTB4 by unlabeled LTB4 (D), 12(S)- 
LTB4 (&), 5(S),12(S)-6 trans-di-HETE (ZX), LTD4 {O), and 5-HETE (O). Each data point 
represents the mean _. SD of duplicate measurements from three experiments. The  inhibitory 
dissociation constants for the three isomers of 5,12-di-HETE are summarized in Table I. 

suggest that LTB4 and 12(S)-LTB4 each bind with markedly different affinities 
to the two classes of sites, whereas 5(S), 12(S)-6 trans-di-HETE exhibited approx- 
imately the same affinity for the two types of LTB4 binding sites. These conclu- 
sions were confirmed by a nonlinear least squares analysis of the data (Fig. 3), 
which yielded characteristic inhibitory dissociation constants for LTB4 and the 
other isomers of 5,12-di-HETE (Table I). The  ICs0 values for the binding of the 
5,12 di-HETE isomers to the high affinity receptor correlate closely with the 
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ECs0 values for chemotactic potency, suggesting that the high affinity receptors 
are involved in mediating the chemotactic response of PMN leukocytes to all of 
the related fatty acids. 

The chemotactically inactive lipid LTD4, as well as 10 -6 M fMLP and a 
maximally chemotactic concentration of C5fr, did not inhibit significantly the 
binding of [3H]LTB4 to PMN leukocytes, suggesting that both sets of  receptors 
are specific for LTB4 and structurally related fatty acids and are distinct from 
the receptors previously defined for the chemotactic peptides. The quantitatively 
predominant 5-1ipoxygenase product of human PMN leukocytes, 5-HETE, also 
inhibited the specific binding of [SH]LTB4 to PMN leukocytes, but at sufficiently 
high concentrations that 100% inhibition of the binding of [3H]LTB4 could not 
be achieved. 

Correlation of the Reduction in [~H]LTB4 Binding with the Decrease in Chemotactic 
Response of Deactivated PMN Leukocytes. Preincubation of PMN leukocytes with 
LTB4, followed by washing, resulted in a decreased chemotactic response to 
LTB4, whereas the chemotactic response to other stimuli was only minimally 
decreased (27). A similarly selective decrease in the chemotactic responsiveness 
ofPMN leukocytes pretreated with N-formyi-methionyl peptides has been termed 
deactivation and shown to correlate with a decrease in the number of PMN 
leukocyte receptors for N-formyl-methionyl peptides (28, 29). PMN leukocytes 
pretreated at 37°C for 10 min with different concentrations of LTB4 exhibited 
significantly diminished chemotactic responses to subsequent stimulation with 
LTB4 (Fig. 4A). The chemotactic responses to 3 × 10 -9 M and 3 × 10 -s M LTB4 
were suppressed significantly by preincubation of PMN leukocytes with concen- 
trations of LTB4 as low as 0.1 and 0.3 nM, respectively. The amount of [3H]- 
LTB4 bound to the PMN leukocytes decreased concomitantly with the chemo- 
tactic response. The chemotactic response to C5fr also decreased in a conentra- 
tion-dependent manner after pretreatment of the PMN leukocytes with LTB4, 
but a 30-100-fold higher LTB4 concentration was required to achieve the same 
extent of  deactivation to C5fr as to 3 × 10 -s M LTB4. With preincubation 
concentrations of 3 × 10 -2° M LTB4 or higher, the chemotactic response to C5fr 
was significantly greater (P < 0.05, paired Student's t test) than that to 3 × 10 -8 
M LTB4. 

Scatchard analysis of the binding of [3H]LTB4 to PMN leukocytes pretreated 
with 1 × 10 -8 M LTB4 revealed a complete loss of the high affinity receptors 
along with a significant change in the number and affinity of the low affinity 
receptor for LTB4 (Fig. 5). The PMN leukocytes pretreated with LTB4 exhibited 
a single class of LTB4 receptors with a Kd of 3.1 + 2.8 X 10 -7 M (mean ___ SD, 
n = 3) and a receptor density of 1.1 + 1.0 × 106 per PMN leukocyte. The 
receptors expressed on the LTB4-deactivated PMN leukocytes exhibited a sig- 
nificantly lower affinity (P - 0.04) and higher density (P = 0.05) than those 
observed on untreated PMN leukocytes using a Student's t test for unpaired 
populations of samples. Preincubation of PMN leukocytes with HBSS-OVA alone 
at 37 °C did not alter the binding of  [3H]LTB4 (Fig. 5). 

The selective loss of the high affinity receptors for LTB4 and the parallel 
reduction in chemotactic responses to LTB4 after deactivation suggested that 
the high affinity receptors may mediate the chemotactic responses of PMN 
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FIGURE 4. [SH]LTB4-induced chemotaxis and/3-glucuronidase release, and binding of [SH]- 
LTB4 by PMN leukocytes pretreated with LTB4. After preincubation with different concen- 
trations of LTB4 or buffer alone for 10 rain at 37°C, the PMN leukocytes were washed and 
used to assess binding of [SH]LTB4 and functions: (A) Chemotactic responses to a 1:30 dilution 

9 e of C5fr (O), 3 X 10- M LTB, (IB), and 3 x 10- M LTB4 (A). Control PMN leukocytes 
incubated in HBSS-OVA alone gave (100%) migration values of 25.1 3= 2.4, 10.3 3= 3.0, and 
21.8 3= 2.6 net PMN ]eukocytes per  hpf  (mean 3= SD, n - 3) in response to C5fr, 3 x 10 -9 M 
LTB4, and 3 x 10 -8 M LTB4, respectively. (B) B-glucuronidase release. Control PMN leuko- 
cytes incubated in HBSS-OVA alone released 5.0 3= 1.6, 18.9 3= 3.7, and 23.3 3= 3.8 net 
percentage of the total/3-glucuronidase (mean + SD, n = 3) in response to a 1:20 dilution of 
CSfr (O), 3 X 10 -8 M LTB4 (A), and 3 x 10 -~ M LTB4 (I-I), respectively. Specific binding of  1 
x 10 -t° M [SH]LTB4 ( 0 )  is shown in both A and B. Each data point represents the mean 3= 
SD for three experiments. A paired Student's t test was used to assess the statistical significance 
of differences between control leukocytes and LTB,-treated leukocytes; levels of significance 
are as follows: *, P < 0.05; +, P < 0.01; ++,  P < 0.005. 
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FIGURE 5. Scatchard analysis of the specific binding of LTB4 to PMN leukocytes deactivated 
chemotactically by pretreatment with LTB4. B/F,  bound/ f ree  concentration of LTB4. PMN 
leukocytes were preincubated in the absence (e) and presence (O) of I X 10 -s M LTB4 for 10 
min at 37°C and washed. The  solid and dashed lines were constructed from the binding 
parameters determined with the nonlinear least squares curve-fitting program. The  binding 
data for the control PMN leukocytes preincubated in HBSS-OVA alone was best fit by a two- 
site binding model with a Kdl of 3.6 X l 0 -~° M and Kd~ of 8.8 X 10 -s M, and a receptor density 
of 4,600 and 284,000 receptors per PMN leukocyte for the high and low affinity sites, 
respectively. The  binding data for the PMN leukocytes preincubated with 1 x 10 -a M LTB4 
was best fit by a one-site binding model with a single Kd of 1.0 X 10 -v M and a receptor density 
of 353,000 per PMN leukocyte. 

leukocytes to LTB4. The  elicitation of release of granule enzymes in the presence 
of cytochalasin B requires significantly higher concentrations of LTB4 than 
chemotaxis and thus was considered to be mediated by the low affinity receptors 
for LTB4. Pretreatment of PMN leukocytes with 1 × 10 -s M LTB4 at concen- 
trations that inhibited completely the chemotactic response to LTB4 did not 
significantly inhibit the release of/3-glucuronidase evoked by 3 × 10 -7 M LTB4 
and only minimally suppressed that elicited by 3 × 10 -s M LTB4 (Fig. 4B). That  
none of the high affinity receptors were expressed on chemotactically deactivated 
PMN leukocytes implies that LTB4 stimulates enzyme release principally by 
binding to the low affinity PMN leukocyte receptors for LTB4. 

Discussion 
The  availability of [3H]LTB4 of high specific activity and purity and the 

application of computer-based least squares fitting of the results of binding to 
PMN leukocytes permitted the definition of two classes of receptors of different 
affinities. The  specific binding of [SH]LTB4 to PMN leukocytes accounted for 
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>88% of the total binding at equilibrium, as assessed by the extent of inhibition 
of binding by a 15,000-fold higher concentration of nonradioactive LTB4. 
Maximum specific binding of [SH]LTB4 was attained rapidly, reaching a plateau 
level within 10 min, and was rapidly dissociated by the addition of a 15,000-fold 
higher concentration of nonradioactive LTB4 (Fig. 1). The  specific binding of 
LTB4 was concentration dependent  and reached saturation at 800 nM LTB4. 
Analysis of  the curvilinear Scatchard plot of  the LTB4 binding data indicated 
that the best fit was achieved by a model of  two classes of  receptors of  different 
affinities (Fig. 2). The  two classes of LTB4 receptors consisted of a mean of 4.4 
× l0 s and 2.7 × 105 sites per PMN leukocyte with respective mean affinities of 
3.9 × 10 -1° M (Kal) and 6.1 x 10 -8 M (Kd2) (Table I). 

The  coupling of the high affinity receptors for LTB4 to the stimulation of 
PMN leukocyte chemotaxis was suggested initially by the similarity of the Ka~ 
for LTB4 and the concentration of LTB4 required to elicit a chemotactic response 
that was 50% of maximum (ECs0) (Table I). This relationship was confirmed by 
the results of studies of chemotactic structural isomers of LTB4 (Fig. 3, Table I). 
12(S)-LTB4 is a chemotactic factor for PMN leukocytes that possessed only 5% 
of the potency of LTB4 and exhibited a Ka~ -5.5-fold greater than that of LTB4. 
The  5(S),12(S)-6 trans-di-HETE had only 1 /100th  the chemotactic potency of 
LTB4 and had a Kal - 150-fold greater than that of LTB4. The  Kdl for 5(S), 12(S)- 
6 trans-di-HETE was indistinguishable from the Ka2, indicating that unlike LTB4 
and 12(S)-LTB4, it binds with equal affinity to the two classes of LTB4 receptors. 

The  results of binding and functional studies of PMN leukocytes deactivated 
chemotactically by preincubation with LTB4 and washing confirmed the impor- 
tance of high affinity receptors in the transduction of chemotaxis. A fully 
deactivating exposure to LTB4 reduced by >80% the specific binding of [SH]- 
LTB4 (Fig. 4), which was attributable predominantly to loss of binding by the 
high affinity receptors (Fig. 5). The  extent of loss of high affinity binding of [SH]- 
LTB4 with prior exposure to different concentrations of LTB4 correlated with 
the degree of  reduction in chemotactic response to LTB4, whereas the lysosomal 
degranulating effect of  a low concentration of LTB4 was diminished only mini- 
mally and that of a high concentration of LTB4 was unchanged (Fig. 4). 

Several theoretical models have been proposed to account for the upwardly 
concave curvilinear Scatchard plots seen in studies of other receptors, including 
fixed heterogeneity of combining sites, negatively cooperative site-site interac- 
tions, multi-step binding reactions to distinct components of a single class of 
receptors, and competition of an unlabeled ligand for the nonspecific binding 
component.  The  latter possibility is unlikely because three structurally distinct 
chemotactic isomers of 5,12-di-HETE all suppressed the binding of [SH]LTB4 to 
the same level of nonspecific binding. The  remaining models for curvilinear 
Scatchard plots cannot be differentiated on the basis of equilibrium binding data 
alone, but require further information on the kinetics of ligand binding, on the 
structure of the binding sites, and on the possible association of the binding sites 
with other putative effector molecules of the PMN leukocytes. 

We have chosen to interpret the binding of LTB4 to PMN leukocytes in terms 
of two independent  classes of binding sites because of the evidence relating high 
affinity binding sites to the chemotactic responses of PMN leukocytes to LTB4. 
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The  possible relationship between the low affinity binding site and the stimulation 
by LTB4 of lysosomal enzyme release is not proven, but is suggested both by the 
similarity of Ka2 and the concentrations of LTB4 required to achieve ~3-glucuron- 
idase release and by the failure of chemotactic deactivation to suppress either 
the expression of the low affinity binding sites or PMN leukocyte enzyme release 
in response to LTB4. 

Other  support for the functional role of high affinity LTB4 receptors is derived 
from the results of studies of  the expression of PMN leukocyte receptors for 
fMLP. Chemotaxis is elicited by low concentrations and lysosomal enzyme 
secretion by higher concentrations of fMLP (31, 32). Human PMN leukocyte 
receptors for fMLP in isolated membrane preparations exist in both high and 
low affinity states, that are in part interconvertible through a mechanism regu- 
lated by guanine nucleotides (33). Aiiphatic alcohols (34) and polyene antibiotics 
(35) influence the affinity state of the fMLP receptors on intact PMN leukocytes 
and the effects of such agents have supported a relationship of high affinity 
receptors to chemotaxis and of  low affinity receptors to lysosomal enzyme 
secretion. For example, the shift from low to high affinity sites induced by the 
aliphatic alcohols enhances chemotaxis and suppresses enzyme secretion, while 
the opposite effect of polyene antibiotics on receptor affinity diminishes chemo- 
taxis and enhances enzyme secretion. While such studies have not been per- 
formed for LTB4 receptors, intact human PMN leukocytes before any manipu- 
lation have two clearly definable classes of receptors for LTB4 (Fig. 2, Table I), 
but not for fMLP (32). Nonetheless the net effective expression of the high 
affinity receptors for LTB4 may be attributable to complex cellular mechanisms, 
as chemotactic deactivation alters rapidly and strikingly the affinity a n d / o r  
number  of such receptors (Fig. 5). The  relationship of alterations in the high 
affinity receptors for LTB4 to chemotactic defects induced in vitro and acquired 
in some human diseases is now susceptible to analysis and may provide new 
approaches for correcting such functional defects. 

S u m m a r y  
Human polymorphonuclear (PMN) leukocytes bound [~H]leukotriene B4 ([~H]- 

LTB4) specifically, as assessed by the displacement of 88% or more of the bound 
radioactivity by a 15,000-fold higher concentration of nonradioactive LTB4 or 
by micromolar concentrations of  structural isomers of LTB4. The  specific binding 
of [3H]LTB4 by PMN leukocytes was characterized by rapid association and 
dissociation, and was saturable at 800 nM LTB4. The  results of computer  analyses 
of the concentration dependence of binding of [~H]LTB4 were consistent with 
the expression of two classes of  receptors having respective mean affinities of 3.9 
x 10 -~° M and 6.1 x 10 -8 M and mean densities of 4.4 x l0  S and 2.7 x 10 ~ per 
PMN leukocyte. Structural isomers of LTB4 inhibited the binding of [~H]LTB4 
to PMN leukocytes at concentrations similar to those required to elicit chemo- 
taxis, while chemotactic peptides did not inhibit binding. PMN leukocytes that 
were deactivated by prior exposure to LTB4 lost high affinity binding sites 
selectively and concurrently with a reduction in the chemotactic response to 
LTB4. Chemotactic deactivation altered, but did not eliminate, the low affinity 
receptors for LTB4 and reduced only minimally the lysosomal degranulation 
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elicited by LTB4. The  high affinity receptors for LTB4 on normal human PMN 
leukocytes appear to transduce the chemotaxis evoked by LTB4 without substan- 
tially modifying lysosomal degranulation. 

Received for publication 18 October 1983 and in revised form 20 December 1983. 
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