Skip to Main Content
Skip Nav Destination

One mechanism regulating the ability of different subsets of T helper (Th) cells to respond to cytokines is the differential expression of cytokine receptors. For example, Th2 cells express both chains of the interferon γ receptor (IFN-γR), whereas Th1 cells do not express the second chain of the IFN-γR (IFN-γR2) and are therefore unresponsive to IFN-γ. To determine whether the regulation of IFN-γR2 expression, and therefore IFN-γ responsiveness, is important for the differentiation of naive CD4+ T cells into Th1 cells or for Th1 effector function, we generated mice in which transgenic (TG) expression of IFN-γR2 is controlled by the CD2 promoter and enhancer. CD4+ T cells from IFN-γR2 TG mice exhibit impaired Th1 polarization potential in vitro. TG mice also display several defects in Th1-dependent immunity in vivo, including attenuated delayed-type hypersensitivity responses and decreased antigen-specific IFN-γ production. In addition, TG mice mount impaired Th1 responses against Leishmania major, as manifested by increased parasitemia and more severe lesions than their wild-type littermates. Together, these data suggest that the sustained expression of IFN-γR2 inhibits Th1 differentiation and function. Therefore, the acquisition of an IFN-γ–unresponsive phenotype in Th1 cells plays a crucial role in the development and function of these cells.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal