Oxidized low-density lipoprotein (oxLDL) is considered one of the principal effectors of atherogenesis. To explore mechanisms by which oxLDL affects human mononuclear phagocytes, we incubated these cells in medium containing oxLDL, acetylated LDL (acLDL), or native LDL, or on surfaces coated with these native and modified lipoproteins. The presence of soluble oxLDL, acLDL, or native LDL in the medium did not stimulate H2O2 secretion by macrophages. In contrast, macrophages adherent to surfaces coated with oxLDL secreted three- to fourfold more H2O2 than macrophages adherent to surfaces coated with acLDL or native LDL. Freshly isolated blood monocytes secreted little H2O2 regardless of the substrate on which they were plated. H2O2 secretion was maximal in cells maintained for 4–6 d in culture before plating on oxLDL-coated surfaces. Fucoidan, a known ligand of class A macrophage scavenger receptors (MSR-A), significantly reduced macrophage adhesion to surfaces coated with oxLDL or acLDL. Monoclonal antibody SMO, which blocks oxLDL binding to CD36, did not inhibit adhesion of macrophages to oxLDL-coated surfaces but markedly reduced H2O2 secretion by these cells. These studies show that MSR-A is primarily responsible for adhesion of macrophages to oxLDL-coated surfaces, that CD36 signals H2O2 secretion by macrophages adherent to these surfaces, and that substrate-bound, but not soluble, oxLDL stimulates H2O2 secretion by macrophages.
Skip Nav Destination
Article navigation
21 December 1998
Article|
December 21 1998
Complementary Roles for Scavenger Receptor A and CD36 of Human Monocyte–derived Macrophages in Adhesion to Surfaces Coated with Oxidized Low-Density Lipoproteins and in Secretion of H2O2
Horst Maxeiner,
Horst Maxeiner
From the *Department of Physiology and Cellular Biophysics, and ‡Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032; and the §Department of Medicine, Beth Israel Hospital, Albert Einstein College of Medicine, New York 10003
Search for other works by this author on:
Jens Husemann,
Jens Husemann
From the *Department of Physiology and Cellular Biophysics, and ‡Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032; and the §Department of Medicine, Beth Israel Hospital, Albert Einstein College of Medicine, New York 10003
Search for other works by this author on:
Christian A. Thomas,
Christian A. Thomas
From the *Department of Physiology and Cellular Biophysics, and ‡Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032; and the §Department of Medicine, Beth Israel Hospital, Albert Einstein College of Medicine, New York 10003
Search for other works by this author on:
John D. Loike,
John D. Loike
From the *Department of Physiology and Cellular Biophysics, and ‡Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032; and the §Department of Medicine, Beth Israel Hospital, Albert Einstein College of Medicine, New York 10003
Search for other works by this author on:
Joseph El Khoury,
Joseph El Khoury
From the *Department of Physiology and Cellular Biophysics, and ‡Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032; and the §Department of Medicine, Beth Israel Hospital, Albert Einstein College of Medicine, New York 10003
Search for other works by this author on:
Samuel C. Silverstein
Samuel C. Silverstein
From the *Department of Physiology and Cellular Biophysics, and ‡Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032; and the §Department of Medicine, Beth Israel Hospital, Albert Einstein College of Medicine, New York 10003
Search for other works by this author on:
Horst Maxeiner
From the *Department of Physiology and Cellular Biophysics, and ‡Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032; and the §Department of Medicine, Beth Israel Hospital, Albert Einstein College of Medicine, New York 10003
Jens Husemann
From the *Department of Physiology and Cellular Biophysics, and ‡Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032; and the §Department of Medicine, Beth Israel Hospital, Albert Einstein College of Medicine, New York 10003
Christian A. Thomas
From the *Department of Physiology and Cellular Biophysics, and ‡Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032; and the §Department of Medicine, Beth Israel Hospital, Albert Einstein College of Medicine, New York 10003
John D. Loike
From the *Department of Physiology and Cellular Biophysics, and ‡Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032; and the §Department of Medicine, Beth Israel Hospital, Albert Einstein College of Medicine, New York 10003
Joseph El Khoury
From the *Department of Physiology and Cellular Biophysics, and ‡Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032; and the §Department of Medicine, Beth Israel Hospital, Albert Einstein College of Medicine, New York 10003
Samuel C. Silverstein
From the *Department of Physiology and Cellular Biophysics, and ‡Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032; and the §Department of Medicine, Beth Israel Hospital, Albert Einstein College of Medicine, New York 10003
Address correspondence to Samuel C. Silverstein, Department of Physiology, BB1111, Columbia University, 630 W. 168th St., New York, NY 10032. Phone: 212-305-3546; Fax: 212-305-5775; E-mail: [email protected]
Received:
April 30 1998
Revision Received:
October 05 1998
Online ISSN: 1540-9538
Print ISSN: 0022-1007
1998
J Exp Med (1998) 188 (12): 2257–2265.
Article history
Received:
April 30 1998
Revision Received:
October 05 1998
Citation
Horst Maxeiner, Jens Husemann, Christian A. Thomas, John D. Loike, Joseph El Khoury, Samuel C. Silverstein; Complementary Roles for Scavenger Receptor A and CD36 of Human Monocyte–derived Macrophages in Adhesion to Surfaces Coated with Oxidized Low-Density Lipoproteins and in Secretion of H2O2 . J Exp Med 21 December 1998; 188 (12): 2257–2265. doi: https://doi.org/10.1084/jem.188.12.2257
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement