Skip to Main Content
Skip Nav Destination
Article navigation

The T cell receptor for antigen (TCR) is a multisubunit complex that consists of at least seven polypeptides: the clonotypic, disulfide-linked α/β heterodimer that is noncovalently associated with the invariant polypeptides of the CD3 complex (CD3-γ, -δ, -ε) and ζ, a disulfide-linked homodimer. We achieved the complete assembly of the human TCR in an in vitro transcription/translation system supplemented with dog pancreas microsomes by simultaneous translation of the messenger RNAs encoding the TCR-α, -β and CD3-γ, -δ, -ε, and -ζ subunits. CD3-ε, one of the subunits that initiates the assembly of the TCR in living cells, forms misfolded, disulfide-linked homooligomers when translated alone. However, co-translation of one of its first binding partners in the course of assembly, CD3-γ or -δ, led to the expression of mainly monomeric and correctly folded ε subunits, the only form we could detect as part of a properly assembled TCR complex. In the absence of these subunits, the ER-resident chaperone calnexin interacted with oligomeric, i.e. misfolded, structures of CD3-ε in a glycan-independent manner. A glycan-dependent interaction between CD3-ε and calnexin was mediated by CD3-γ and concerned only monomeric CD3-ε complexed with CD3-γ, but was dispensable for proper folding of CD3-ε. We suggest that in addition to its signaling function, CD3-ε serves as a monitor for proper subunit assembly of the TCR.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal