We have previously demonstrated that human peripheral blood low density mononuclear cells cultured in granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4 develop into dendritic cells (DCs) that are extremely efficient in presenting soluble antigens to T cells. To identify the mechanisms responsible for efficient antigen capture, we studied the endocytic capacity of DCs using fluorescein isothiocyanate-dextran, horseradish peroxidase, and lucifer yellow. We found that DCs use two distinct mechanisms for antigen capture. The first is a high level of fluid phase uptake via macropinocytosis. In contrast to what has been found with other cell types, macropinocytosis in DCs is constitutive and allows continuous internalization of large volumes of fluid. The second mechanism of capture is mediated via the mannose receptor (MR), which is expressed at high levels on DCs. At low ligand concentrations, the MR can deliver a large number of ligands to the cell in successive rounds. Thus, while macropinocytosis endows DCs with a high capacity, nonsaturable mechanism for capture of any soluble antigen, the MR gives an extra capacity for antigen capture with some degree of selectivity for non-self molecules. In addition to their high endocytic capacity, DCs from GM-CSF + IL-4-dependent cultures are characterized by the presence of a large intracellular compartment that contains high levels of class II molecules, cathepsin D, and lysosomal-associated membrane protein-1, and is rapidly accessible to endocytic markers. We investigated whether the capacity of DCs to capture and process antigen could be modulated by exogenous stimuli. We found that DCs respond to tumor necrosis factor alpha, CD40 ligand, IL-1, and lipopolysaccharide with a coordinate series of changes that include downregulation of macropinocytosis and Fc receptors, disappearance of the class II compartment, and upregulation of adhesion and costimulatory molecules. These changes occur within 1-2 d and are irreversible, since neither pinocytosis nor the class II compartment are recovered when the maturation-inducing stimulus is removed. The specificity of the MR and the capacity to respond to inflammatory stimuli maximize the capacity of DCs to present infectious non-self antigens to T cells.
Skip Nav Destination
Article navigation
1 August 1995
Article|
August 01 1995
Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products.
F Sallusto,
F Sallusto
Basel Institute for Immunology, Switzerland.
Search for other works by this author on:
M Cella,
M Cella
Basel Institute for Immunology, Switzerland.
Search for other works by this author on:
C Danieli,
C Danieli
Basel Institute for Immunology, Switzerland.
Search for other works by this author on:
A Lanzavecchia
A Lanzavecchia
Basel Institute for Immunology, Switzerland.
Search for other works by this author on:
F Sallusto
Basel Institute for Immunology, Switzerland.
M Cella
Basel Institute for Immunology, Switzerland.
C Danieli
Basel Institute for Immunology, Switzerland.
A Lanzavecchia
Basel Institute for Immunology, Switzerland.
Online ISSN: 1540-9538
Print ISSN: 0022-1007
J Exp Med (1995) 182 (2): 389–400.
Citation
F Sallusto, M Cella, C Danieli, A Lanzavecchia; Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products.. J Exp Med 1 August 1995; 182 (2): 389–400. doi: https://doi.org/10.1084/jem.182.2.389
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement