To test directly the determinant selection hypothesis of immune response gene function, we primed strain 13 T lymphocytes in vitro with allogeneic bovine insulin pulsed strain 2 macrophages. Strain 2 macrophages were found to be fully competent to present bovine insulin B chain to strain 13 T cells despite the fact that strain 2 guinea pigs are normally totally unresponsive to this antigen. These results are incompatible with a strict interpretation of the determinant selection hypothesis, which would have predicted that strain 2 macrophages would have been restricted to the presentation of A chain loop determinants. In addition, a comparison of the reactivity profiles of self-Ia- and allo-Ia-restricted strain 13 T cells to a series of synthetic B chain peptide fragments revealed that the allo-Ia-restricted populations could be activated by autologous guinea pig insulin. Taken together, these observations strongly suggest that the clonal deletion of self-reactive cells is likely to be I region restricted and that nonresponsiveness to any protein antigen may result from a restriction in the T cell repertoire that is generated during ontogeny by a clonal deletion mechanism of tolerance to self.
Skip Nav Destination
Article navigation
1 April 1983
Article|
April 01 1983
Antigen-presenting cells from nonresponder strain 2 guinea pigs are fully competent to present bovine insulin B chain to responder strain 13 T cells. Evidence against a determinant selection model and in favor of a clonal deletion model of immune response gene function.
G A Dos Reis
E M Shevach
Online ISSN: 1540-9538
Print ISSN: 0022-1007
J Exp Med (1983) 157 (4): 1287–1299.
Citation
G A Dos Reis, E M Shevach; Antigen-presenting cells from nonresponder strain 2 guinea pigs are fully competent to present bovine insulin B chain to responder strain 13 T cells. Evidence against a determinant selection model and in favor of a clonal deletion model of immune response gene function.. J Exp Med 1 April 1983; 157 (4): 1287–1299. doi: https://doi.org/10.1084/jem.157.4.1287
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement