Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-1 of 1
J. Brooks
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1934) 17 (6): 783–790.
Published: 20 July 1934
Abstract
1. The amount of free unfrozen water, i.e . water acting as normal solvent, in frog's muscle at temperatures below the initial freezing-point has been calculated from the vapour pressure isotherm of the muscle. 2. Significant amounts of free water are present at –20°C. The total amount of unfrozen water at –20°C. cannot, therefore, be taken as a measure of the bound water in muscle. 3. The calculated values of free water, when compared with experimentally determined values of total unfrozen water, indicate that the amount of bound water in muscle at various temperatures is small. 4. A temperature considerably below –20°C., roughly between –40° and –60°C., is required to freeze completely the free water in muscle.