The mechanism of G protein beta gamma subunit (G beta gamma)-induced activation of the muscarinic K+ channel (KACh) in the guinea pig atrial cell membrane was examined using the inside-out patch clamp technique. G beta gamma and GTP-gamma S-bound alpha subunits (G alpha *'s) of pertussis toxin (PT)-sensitive G proteins were purified from bovine brain. Either in the presence or absence of Mg2+, G beta gamma activated the KACh channel in a concentration-dependent fashion. 10 nM G beta gamma almost fully activated the channel in 132 of 134 patches (98.5%). The G beta gamma-induced maximal channel activity was equivalent to or sometimes larger than the GTP-gamma S-induced one. Half-maximal activation occurred at approximately 6 nM G beta gamma. Detergent (CHAPS) and boiled G beta gamma preparation could not activate the KACh channel. G beta gamma suspended by Lubrol PX instead of CHAPS also activated the channel. Even when G beta gamma was pretreated in Mg(2+)-free EDTA internal solution containing GDP analogues (24-48 h) to inactivate possibly contaminating G i alpha *'s, the G beta gamma activated the channel. Furthermore, G beta gamma preincubated with excessive GDP-bound G o alpha did not activate the channel. These results indicate that G beta gamma itself, but neither the detergent CHAPS nor contaminating G i alpha *, activates the KACh channel. Three different kinds of G i alpha * at 10 pM-10 nM could weakly activate the KACh channel. However, they were effective only in 40 of 124 patches (32.2%) and their maximal channel activation was approximately 20% of that induced by GTP-gamma S or G beta gamma. Thus, G i alpha * activation of the KACh channel may not be significant. On the other hand, G i alpha *'s effectively activated the ATP-sensitive K+ channel (KATP) in the ventricular cell membrane when the KATP channel was maintained phosphorylated by the internal solution containing 100 microM Mg.ATP. G beta gamma inhibited adenosine or mACh receptor-mediated, intracellular GTP-induced activation of the KATP channel. G i alpha *'s also activated the phosphorylated KATP channel in the atrial cell membrane, but did not affect the background KACh channel. G beta gamma subsequently applied to the same patch caused prominent KACh channel activation. The above results may indicate two distinct regulatory systems of cardiac K+ channels by PT-sensitive G proteins: G i alpha activation of the KATP channel and G beta gamma activation of the KACh channel.
Skip Nav Destination
Article navigation
1 June 1992
Article|
June 01 1992
On the mechanism of G protein beta gamma subunit activation of the muscarinic K+ channel in guinea pig atrial cell membrane. Comparison with the ATP-sensitive K+ channel.
H Ito,
H Ito
2nd Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.
Search for other works by this author on:
R T Tung,
R T Tung
2nd Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.
Search for other works by this author on:
T Sugimoto,
T Sugimoto
2nd Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.
Search for other works by this author on:
I Kobayashi,
I Kobayashi
2nd Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.
Search for other works by this author on:
K Takahashi,
K Takahashi
2nd Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.
Search for other works by this author on:
T Katada,
T Katada
2nd Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.
Search for other works by this author on:
M Ui,
M Ui
2nd Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.
Search for other works by this author on:
Y Kurachi
Y Kurachi
2nd Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.
Search for other works by this author on:
H Ito
,
R T Tung
,
T Sugimoto
,
I Kobayashi
,
K Takahashi
,
T Katada
,
M Ui
,
Y Kurachi
2nd Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1992) 99 (6): 961–983.
Citation
H Ito, R T Tung, T Sugimoto, I Kobayashi, K Takahashi, T Katada, M Ui, Y Kurachi; On the mechanism of G protein beta gamma subunit activation of the muscarinic K+ channel in guinea pig atrial cell membrane. Comparison with the ATP-sensitive K+ channel.. J Gen Physiol 1 June 1992; 99 (6): 961–983. doi: https://doi.org/10.1085/jgp.99.6.961
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Effects of anions on the G protein-mediated activation of the muscarinic K+ channel in the cardiac atrial cell membrane. Intracellular chloride inhibition of the GTPase activity of GK.
J Gen Physiol (May,1992)
A functional model for G protein activation of the muscarinic K+ channel in guinea pig atrial myocytes. Spectral analysis of the effect of GTP on single-channel kinetics.
J Gen Physiol (December,1996)
Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism.
J Gen Physiol (November,1996)
Email alerts
Advertisement