In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.
Skip Nav Destination
Article navigation
1 February 1992
Article|
February 01 1992
Electrophysiological effects of basolateral [Na+] in Necturus gallbladder epithelium.
G A Altenberg,
G A Altenberg
Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550.
Search for other works by this author on:
J S Stoddard,
J S Stoddard
Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550.
Search for other works by this author on:
L Reuss
L Reuss
Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550.
Search for other works by this author on:
G A Altenberg
,
J S Stoddard
,
L Reuss
Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550.
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1992) 99 (2): 241–262.
Citation
G A Altenberg, J S Stoddard, L Reuss; Electrophysiological effects of basolateral [Na+] in Necturus gallbladder epithelium.. J Gen Physiol 1 February 1992; 99 (2): 241–262. doi: https://doi.org/10.1085/jgp.99.2.241
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Osmotic water permeability of Necturus gallbladder epithelium.
J Gen Physiol (April,1989)
cAMP-activated apical membrane chloride channels in Necturus gallbladder epithelium. Conductance, selectivity, and block.
J Gen Physiol (August,1993)
Electrophysiological effects of extracellular ATP on Necturus gallbladder epithelium.
J Gen Physiol (May,1991)
Email alerts
Advertisement