Single channel patch-clamp techniques were used to study nicotinic acetylcholine receptors in cultured rat myotubes. The single channel conductance in pure cesium and sodium levels off at high concentrations, as if a binding site within the channel were saturating. The conductances at very low concentrations, however, are larger than predicted by the simplest one-site transport model fitted to the high-concentration data. At low concentrations, the current-voltage relations are inwardly rectifying, but they become more ohmic if a small amount of divalent cations is added externally. Magnesium and barium are good permeants that have rather high affinities for the channel. Upon adding low millimolar concentrations of these divalent cations externally to a membrane bathed in pure cesium, the inward current carried by cesium is decreased. As more divalent cations are added, the inward-going currents continued to decrease and the divalent cation replaces cesium as the main current carrier. The ion transport data are described by considering the size, shape, and possible net charge of the channel. In that way, even the complex features of transport are explained in a realistic physical framework. The results are consistent with the channel having long, wide, multiply occupied vestibules that serve as transition zones to the short, selective, singly occupied narrow region of the channel. A small amount of net negative charge within the pore could produce concentration-dependent potentials that provide a simple explanation for the more complicated aspects of the permeation properties.
Skip Nav Destination
Article navigation
1 June 1987
Article|
June 01 1987
Monovalent and divalent cation permeation in acetylcholine receptor channels. Ion transport related to structure.
J A Dani
,
G Eisenman
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1987) 89 (6): 959–983.
Citation
J A Dani, G Eisenman; Monovalent and divalent cation permeation in acetylcholine receptor channels. Ion transport related to structure.. J Gen Physiol 1 June 1987; 89 (6): 959–983. doi: https://doi.org/10.1085/jgp.89.6.959
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Ion permeation through light-activated channels in rhabdomeric photoreceptors. Role of divalent cations.
J Gen Physiol (June,1996)
An ion's view of the potassium channel. The structure of the permeation pathway as sensed by a variety of blocking ions.
J Gen Physiol (May,1985)
Permeation and block by internal and external divalent cations of the catfish cone photoreceptor cGMP-gated channel.
J Gen Physiol (September,1995)
Email alerts
Advertisement