We examined the effect of neuroleptics on Ca-activated K channels from dog airway smooth muscle cells. Because these agents inhibit a variety of other Ca-mediated processes, it seemed possible that they might also inhibit Ca-activated K channels. In excised, inside-out patches, several neuroleptics potently and reversibly inhibited the K channel from the internal but not the external surface of the patch. Measurements of the effect on open probability and open- and closed-state durations support a simple kinetic model in which neuroleptics bind to and block the open channel. Inhibition by neuroleptics was moderately voltage dependent, with blockers less potent at hyperpolarizing voltages. The relationship between voltage and the dissociation constant for the blocker suggests that the binding site is one-third of the way across the channel's electrical field. Equilibrium dissociation constants for the drug-channel complex were: haloperidol, 1.0 +/- 0.1 microM; trifluoperazine, 1.4 +/- 0.1 microM; thioridazine, 2.4 +/- 0.1 microM; and chlorpromazine, 2.0 microM. This rank-order potency is different from their potency as calmodulin inhibitors, which suggests that neuroleptics bind to the channel rather than a calmodulin-channel complex.
Skip Nav Destination
Article navigation
1 February 1987
Article|
February 01 1987
Neuroleptics antagonize a calcium-activated potassium channel in airway smooth muscle.
J D McCann
,
M J Welsh
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1987) 89 (2): 339–352.
Citation
J D McCann, M J Welsh; Neuroleptics antagonize a calcium-activated potassium channel in airway smooth muscle.. J Gen Physiol 1 February 1987; 89 (2): 339–352. doi: https://doi.org/10.1085/jgp.89.2.339
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Volume regulation by human lymphocytes. Role of calcium.
J Gen Physiol (May,1982)
Activation of the Ano1 (TMEM16A) chloride channel by calcium is not mediated by calmodulin
J Gen Physiol (January,2014)
Calcium-regulatory mechanisms. Functional classification using skinned fibers.
J Gen Physiol (February,1981)
Email alerts
Advertisement