A modified version of a capacitance probe technique has been used to measure fluid transport across the isolated retinal pigment epithelium (RPE)-choroid of the bullfrog. The accuracy of this measurement is 0.5-1.0 nl/min. Experiments carried out in the absence of external osmotic or hydrostatic gradients show that the RPE-choroid transports fluid from the retinal to the choroid side of the tissue at a rate of approximately 10 nl/min (4-6 microliters/cm2 X h). Net fluid absorption (Jv) was abolished within 10 min by the mitochondrial uncoupler 2,4-dinitrophenol. It was also inhibited (70%) by the removal of bicarbonate from the bulk solutions bathing the tissue. Ouabain caused a slow decrease in Jv (no effect at 10 min, 70% at 3 h), which indicates that RPE fluid transport is not directly coupled to the activity of the Na-K pump located at the apical membrane of this epithelium. In contrast to ouabain, cyclic AMP (cAMP) produced a quick decrease in Jv (84% within 5 min). Radioisotope experiments in the open circuit show that cAMP stimulated secretory fluxes of Na and Cl, which accounted for the observed cAMP-induced decrease in Jv. The direction of net fluid absorption, the magnitudes of the net ionic fluxes in the open circuit, and the dependence of Jv on external bicarbonate concentration strongly suggest that fluid absorption is generated primarily by the active absorption of bicarbonate.
Skip Nav Destination
Article navigation
1 June 1984
Article|
June 01 1984
Effects of cyclic AMP on fluid absorption and ion transport across frog retinal pigment epithelium. Measurements in the open-circuit state.
B A Hughes
,
S S Miller
,
T E Machen
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1984) 83 (6): 875–899.
Citation
B A Hughes, S S Miller, T E Machen; Effects of cyclic AMP on fluid absorption and ion transport across frog retinal pigment epithelium. Measurements in the open-circuit state.. J Gen Physiol 1 June 1984; 83 (6): 875–899. doi: https://doi.org/10.1085/jgp.83.6.875
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement