The flow of Ca ions through single Ca channels has been examined. The gigaseal method was used on identifiable snail neurons that were voltage clamped using a two-microelectrode voltage clamp method. Average Ca patch currents and whole cell currents have similar time courses. They are affected similarly by changes in temperature. The differences in amplitude and inactivation between Ba and Ca whole cell currents were present in the patch records. The stationary noise spectra recorded from ensembles of multichannel patches have two components with fast and slow time constants equivalent to two components in the whole cell tail current relaxations. Elementary current amplitudes measured from the variance-mean relationship and from noise spectra gave values comparable to measurements from single channels. The single channel I-V relationship was curvilinear and the maximum slope conductance in 40 mM Cao was 7 pS. The amplitude of unitary currents was unchanged at long times when inactivation had occurred; hence depletion is not involved in this process. Channel density was approximately 3 microns-2 and was the same for Ba and Ca currents. The whole cell asymmetry currents gave very large values for the gating charge per channel. Changes in temperature from 29 to 9 degrees C had only a slight effect on the two Ca tail current tau's at potentials where turn-on of patch and whole cell currents was markedly slowed and the peak amplitudes were reduced by one-third. Single channel recordings were obtained at these two temperatures, and the mean open time and the fast component of the closed times were scarcely affected. Unit amplitudes were reduced by 30% and the slow closed time component was doubled. Therefore, peak currents and the slow closed time component was doubled. Therefore, peak currents were reduced partly as a result of the reduction in unit amplitude, but mainly as a result of a reduction in opening probability, the latter arising from an increase of the long closed times. It is concluded that the behavior of single Ca channels in membrane patches is the same as it is in whole cells. Cooling from 29 to 9 degrees C acts primarily on transitions among closed states and has little effect on the open to closed transition.
Skip Nav Destination
Article navigation
1 May 1984
Article|
May 01 1984
Patch and whole cell calcium currents recorded simultaneously in snail neurons.
H D Lux
,
A M Brown
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1984) 83 (5): 727–750.
Citation
H D Lux, A M Brown; Patch and whole cell calcium currents recorded simultaneously in snail neurons.. J Gen Physiol 1 May 1984; 83 (5): 727–750. doi: https://doi.org/10.1085/jgp.83.5.727
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
A Marine Snail Neurotoxin Shares with Scorpion Toxins a Convergent Mechanism of Blockade on the Pore of Voltage-Gated K Channels
J Gen Physiol (July,1999)
Multiple-site optical recording of membrane potential from a salivary gland. Interaction of synaptic and electrotonic excitation.
J Gen Physiol (June,1983)
Exotic properties of a voltage-gated proton channel from the snail Helisoma trivolvis
J Gen Physiol (May,2018)
Email alerts
Advertisement