We describe here a new retinal pigment epithelium (RPE) response, a delayed hyperpolarization of the RPE basal membrane, which is initiated by the light-evoked decrease of [K+]o in the subretinal space. This occurs in addition to an apical hyperpolarization previously described in cat (Steinberg et al., 1970; Schmidt and Steinberg, 1971) and in bullfrog (Oakley et al., 1977; Oakley, 1977). Intracellular and extracellular potentials and measurements of subretinal [K+]o were recorded from an in vitro preparation of neural retina-RPE-choroid from the lizard Gekko gekko in response to light. Extracellularly, the potential across the RPE, the transepithelial potential (TEP), first increased and then decreased during illumination. Whereas the light-evoked decrease in [K+]o predicted the increase in TEP, the subsequent decrease in TEP was greater than predicted by the reaccumulation of [K+]o. Intracellular RPE recordings showed that a delayed hyperpolarization generated at the RPE basal membrane produced the extra TEP decrease. At light offset, the opposite sequence of membrane potential changes occurred. RPE responses to changes in [K+]o were studied directly in the isolated gecko RPE-choroid. Decreasing [K+]o in the apical bathing solution produced first a hyperpolarization of the apical membrane, followed by a delayed hyperpolarization of the basal membrane, a sequence of membrane potential changes identical to those evoked by light. Increasing [K+]o produced the opposite sequence of membrane potential changes. In both preparations, the delayed basal membrane potentials were accompanied by changes in basal membrane conductance. The mechanism by which a change in extracellular [K+] outside the apical membrane leads to a polarization of the basal membrane remains to be determined.

This content is only available as a PDF.