Exposure of cells to intense light with the photoactivatable reagent, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine), present in the external medium results in irreversible inhibition of chloride or sulfate exchange. This irreversible inhibition seems to result from covalent reaction with the same sites to which NAP-taurine binds reversibly in the dark. As shown in the preceding paper, high chloride concentrations decrease the reversible inhibition by NAP-taurine in the dark, in a manner suggesting that NAP-taurine and chloride compete for the modifier site of the anion transport system. In a similar fashion, high chloride concentrations in the medium during exposure to light cause a decrease in both the irreversible binding of NAP-taurine to the membrane and the inhibition of chloride exchange. Most of the chloride-sensitive irreversibly bound NAP-taurine is found in the 95,000 dalton polypeptide known as band 3 and, after pronase treatment of intact cells, in the 65,000 dalton fragment of this protein produced by proteolytic cleavage. After chymotrypsin treatment of ghosts, the NAP-taurine is localized in the 17,000 dalton transmembrane portion of this fragment. Although the possible involvement of minor labeled proteins cannot be rigorously excluded, the modifier site labeled by external NAP-taurine appears, therefore, to be located in the same portion of the 95,000 dalton polypeptide as is the transport site.
Skip Nav Destination
Article navigation
1 November 1978
Article|
November 01 1978
N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) as a photoaffinity probe for identifying membrane components containing the modifier site of the human red blood cell anion exchange system.
P A Knauf
,
W Breuer
,
L McCulloch
,
A Rothstein
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1978) 72 (5): 631–649.
Citation
P A Knauf, W Breuer, L McCulloch, A Rothstein; N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) as a photoaffinity probe for identifying membrane components containing the modifier site of the human red blood cell anion exchange system.. J Gen Physiol 1 November 1978; 72 (5): 631–649. doi: https://doi.org/10.1085/jgp.72.5.631
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Asymmetry of the red cell anion exchange system. Different mechanisms of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) at the inside and outside of the membrane.
J Gen Physiol (November,1978)
Email alerts
Advertisement