Ventral photoreceptor cells bathed in an organ culture medium typically have resting potentials of -85 mV and membrane resistances of 35 Momega and, when dark-adapted, exhibit large potential fluctuations (LPFs) of 60 mV and small potential fluctuations (SPFs) of less than 30 mV. LPFs appear to be regenerative events triggered by SPFs, the well-known quantum bumps. In the dark, SPFs and LPFs occur spontaneously. At intensities near threshold, the rate of occurrence is directly proportional to light intensity, indicating that SPFs and LPFs are elicited by single photon events. At higher intensities, SPFs and LPFs sum to produce a receptor potential that is graded over approximately a 9-log-unit range of light intensity. Amplitude histograms of the discrete potential waves are bimodal, reflecting the SPF and LPF populations. Histograms of current waves are unimodal. SPFs and LPFs are insensitive to 1 microgram tetrodotoxin. I-V characteristics show initial inward currents of approximately 15 nA for voltage clamps to -40 mV and steady-state outward currents for all clamp potentials. Photoreceptor cells bathed in organ culture medium retain these properties for periods of at least 75 days.

This content is only available as a PDF.