Microspectrophotometrically derived difference spectra from the barnacles Balanus amphitrite and B. eburneus show that a blue illumination after an orange illumination causes a decrease in absorption in the blue region and an increase in absorption in the green-yellow region, with an isosbestic point around 535 nm. Orange-following-blue illumination causes the reverse changes. The dark time between the adapting and measuring lights has no influence on the data. The results confirm previously reported ERP measurements which indicate that the barnacle visual pigment has two photointerconvertible dark-stable states. If one assumes a Dartnall nomogram shape for the two absorption spectra, a best fit to the observed difference spectra is obtained with nomograms peaking at 492 nm and 532 nm, with a peak absorbance ratio around 1.6:1. These two nomograms fit very well the ERP action spectra of metarhodopsin and rhodopsin, respectively, thus indicating that the ERP is a reliable measure of visual-pigment changes in the barnacle. The existence of a photostable blue pigment is demonstrated in B. eburneus and in some of B. amphitrite receptors, and the possible influence of this photostable pigment on the various action spectra measured in the barnacle is discussed.

This content is only available as a PDF.