The electrical resistances of the transcellular and paracellular pathways across the toad urinary bladder epithelium (a typical "tight" sodium-transporting epithelium) were determined by two independent sets of electrophysiological measurements: (a) the measurement of the total transepithelial resistance, the ratio of resistance of the apical to the basal cell membrane, and cable analysis of the voltage spread into the epithelium; (b) the measurement of the total transepithelial resistance and the ratio of resistances of both cell membranes before and after replacing all mucosal sodium with potassium (thus, increasing selectively the resistance of the apical membrane). The results obtained with both methods indicate the presence of a finite transepithelial shunt pathway, whose resistance is about 1.8 times the resistance of the transcellular pathway. Appropriate calculations show that the resistance of the shunt pathway is almost exclusively determined by the zonula occludens section of the limiting junctions. The mean resistance of the apical cell membrane is 1.7 times that of the basal cell membrane. The use of nonconducting materials on the mucosal side allowed us to demonstrate that apparently all epithelial cells are electrically coupled, with a mean space constant of 460 µm, and a voltage spread consistent with a thin sheet model.

This content is only available as a PDF.