When isolated strips of mucosal rabbit ileum are bathed by physiological electrolyte solution the electrical potential difference (PD) across the brush border (ψmc) averages 36 mv, cell interior negative. Rapid replacement of Na in the mucosal solution with less permeant cations, Tris or choline, results in an immediate hyperpolarization of ψmc. Conversely, replacement of choline in the mucosal solution with Na results in an abrupt depolarization of ψmc. These findings indicate that Na contributes to the conductance across the brush border. The presence of actively transported sugars or amino acids in the mucosal solution brings about a marked depolarization of ψmc and a smaller increase in the transmural PD (Δψms). It appears that the Na influx that is coupled to the influxes of amino acids and sugars is electrogenic and responsible for the depolarization of ψmc. Under control conditions Δψms can be attributed to the depolarization of ψmc together with the presence of a low resistance transepithelial shunt, possibly the lateral intercellular spaces. However, quantitatively similar effects of amino acids on ψmc are also seen in tissues poisoned with metabolic inhibitors or ouabain. Under these conditions Δψmc is much smaller than under control conditions. Thus, the depolarization of ψmc might not account for the entire Δψms, observed in nonpoisoned tissue. An additional electromotive force which is directly coupled to metabolic processes might contribute to the normal Δψms.

This content is only available as a PDF.