Studies were performed on Na and K transport by red blood cells of the freshwater turtle under anaerobic and aerobic conditions. Although it had previously been assumed that cation transport in turtle red blood cells was dependent on respiration, the present data show greater Na efflux rates in N2 than in O2. However, ouabain inhibited Na transport by the same amount quantitatively in O2 and N2 gas phases. Thus there was no difference in ouabain-sensitive or "pump" Na transport rates. Na influx rates were higher in nitrogen than in air and potassium influx rates were not significantly different under aerobic and anaerobic conditions. Moreover in the absence of sodium in the bathing medium no difference between air and nitrogen could be discovered. Finally with ethacrynic acid plus ouabain there was an additional decrease in Na efflux but there was a persisting difference between air and nitrogen. These studies do not rule out the existence of a ouabain-insensitive ethacrynic acid-inhibitable flux; however, they suggest that at least part of the activation of Na efflux observed in N2 was due to increased exchange diffusion.

This content is only available as a PDF.