The suitability of frog skin glands as a model for the study of secretory mechanisms in exocrine glands was explored. Periodic voltage clamp was used to determine continually the short-circuit current, chord conductance, and electromotive force of frog skin during neural and pharmacological activation of the skin glands. Both the chord conductance and the short-circuit current increased with glandular activation; the temporal dissociation of these increases suggests that there are at least two separate components to the secretory response. The sensitivity of the secretory electrical changes to changes in the ionic composition of the bathing solutions supports the notion of electrogenic chloride active transport as being basic to the activity of the exocrine glands.

This content is only available as a PDF.