When investigating the freezing behaviour (by thermal analysis) of the glycerol-extracted adductor muscle of Mytilus edulis it was observed that the temperature of ice formation in the muscular tissue was up to 1.5°C lower than the freezing point of the embedding liquid, a 0.25 N KCl solution with pH = 4.9 with which the tissue had been equilibrated prior to the freezing experiment. A smaller freezing point depression was observed if the pH values of the embedding 0.25 N KCl solution were above or below pH = 4.9. Reasoning from results obtained previously in analogous experiments with artificial gels, the anomalous freezing depression is explained by the impossibility of growing at the normal freezing temperature regular macroscopic crystals inside the gel, due to the presence of the gel network. The freezing temperature is here determined by the size of the microprisms penetrating the meshes of the network at the lowered freezing temperature. This process leads finally to an ice block of more or less regular structure in which the filaments are embedded. Prerequisite for this hindrance of ideal ice growth is a sufficient tensile strength of the filamental network. The existence of structurally caused freezing point depression in biological tissue is likely to invalidate many conclusions reported in the literature, in which hypertonicity was deduced from cryoscopic data.

This content is only available as a PDF.