The effects of external calcium deprivation on certain characteristics of the action potential of the lobster motor axon have been studied. Upon exposure to calcium-free solution the spike amplitude is rapidly decreased within a few minutes and is followed by a slow linear decline. The rates of spike rise and fall are proportionally reduced more than the spike but follow similar time courses during calcium lack. Associated with these phenomena are the loss in the normal slow spike repolarization process, the development of a large and lengthy undershoot, and the appearance of a high degree of refractoriness. The mean increase in the refractory period is 525 per cent upon 10 minutes' exposure to calcium-free solution. These effects are completely reversible upon returning the axons to normal solution. These results are compared to similar effects of calcium deprivation on frog myelinated axons and squid and lobster giant axons recently observed by other workers.

This content is only available as a PDF.