Experiments on Nitella indicate that the resting potential is due chiefly to the outwardly directed diffusion potential of electrolytes which is set up at the inner, non-aqueous, protoplasmic surface surrounding the vacuole. We might therefore expect that any change in the concentration of these electrolytes would affect the resting potential. The experiments described here indicate that this expectation is justified.

When a sucrose solution is applied at one end of the cell and water is placed at another spot, water enters at the latter, passes along inside the cell, and escapes into the sucrose solution, but the electrolytes are unable to escape into the sucrose solution (except very slowly) so that the concentration of electrolytes increases in the region in contact with the sucrose solution. Hence the potential at this spot increases. At the other spot where the water enters, the concentration of electrolytes decreases and the potential at this spot falls off.

The changes can be carried out reversibly without injury to the cell.

This content is only available as a PDF.