Daily measurements of hypocotyl length were made on Celosia cristata seedlings cultured in darkness under aseptic conditions at six constant temperatures between 14.5° and 40.5°C. At 40.5° roots did not penetrate the agar and only the hypocotyls that were supported by the wall of the test tube could be measured.

The growth curves were of the generalized logistic type, but of different degrees of skewness. The degree of symmetry of the growth curves was influenced by temperature. At the lower temperatures the maximal growth rate came relatively late in the grand period of growth; at successively higher temperatures it came progressively earlier.

The mean total time rate of growth (millimeter per diem) was found to be a parabolic function of the temperature.

The maximum rate of growth was found from the curve to be at 30.48°C. The maximum observed rate of growth, and the maximum yield, were found to be at 30°C.

At all temperatures above 14.5° the maximum growth activity fell in the second quarter of the whole growth period. At all temperatures tested other than 30°, and at all parts of the growth cycle, the growth yield as measured by height of hypocotyl at any given equivalent point was less than at 30°.

The total duration of life of the seedlings, and the duration of life after the end of the growth period (intermediate period) were inversely proportional to the mean total growth rate. The observations on Celosia cristata seedlings are thus in accord with the "rate of living" theory of life duration.

The optimal temperature for life duration is the minimum temperature, within the range of these observations.

This content is only available as a PDF.